Nothing
#' Plot Output
#'
#' Renders a reactive plot that is suitable for assigning to an `output`
#' slot.
#'
#' The corresponding HTML output tag should be `div` or `img` and have
#' the CSS class name `shiny-plot-output`.
#'
#' @section Interactive plots:
#'
#' With ggplot2 graphics, the code in `renderPlot` should return a ggplot
#' object; if instead the code prints the ggplot2 object with something like
#' `print(p)`, then the coordinates for interactive graphics will not be
#' properly scaled to the data space.
#'
#' See [plotOutput()] for more information about interactive plots.
#'
#' @seealso For the corresponding client-side output function, and example
#' usage, see [plotOutput()]. For more details on how the plots are
#' generated, and how to control the output, see [plotPNG()].
#' [renderCachedPlot()] offers a way to cache generated plots to
#' expedite the rendering of identical plots.
#'
#' @param expr An expression that generates a plot.
#' @param width,height Height and width can be specified in three ways:
#' * `"auto"`, the default, uses the size specified by [plotOutput()]
#' (i.e. the `offsetWidth`/`offsetHeight`` of the HTML element bound to
#' this plot.)
#' * An integer, defining the width/height in pixels.
#' * A function that returns the width/height in pixels (or `"auto"`).
#' The function is executed in a reactive context so that you can refer to
#' reactive values and expression to make the width/height reactive.
#'
#' When rendering an inline plot, you must provide numeric values (in pixels)
#' to both \code{width} and \code{height}.
#' @param res Resolution of resulting plot, in pixels per inch. This value is
#' passed to [plotPNG()]. Note that this affects the resolution of PNG
#' rendering in R; it won't change the actual ppi of the browser.
#' @param alt Alternate text for the HTML `<img>` tag if it cannot be displayed
#' or viewed (i.e., the user uses a screen reader). In addition to a character
#' string, the value may be a reactive expression (or a function referencing
#' reactive values) that returns a character string. If the value is `NA` (the
#' default), then `ggplot2::get_alt_text()` is used to extract alt text from
#' ggplot objects; for other plots, `NA` results in alt text of "Plot object".
#' `NULL` or `""` is not recommended because those should be limited to
#' decorative images.
#' @param ... Arguments to be passed through to [plotPNG()].
#' These can be used to set the width, height, background color, etc.
#' @inheritParams renderUI
#' @param execOnResize If `FALSE` (the default), then when a plot is
#' resized, Shiny will *replay* the plot drawing commands with
#' [grDevices::replayPlot()] instead of re-executing `expr`.
#' This can result in faster plot redrawing, but there may be rare cases where
#' it is undesirable. If you encounter problems when resizing a plot, you can
#' have Shiny re-execute the code on resize by setting this to `TRUE`.
#' @param outputArgs A list of arguments to be passed through to the implicit
#' call to [plotOutput()] when `renderPlot` is used in an
#' interactive R Markdown document.
#' @export
renderPlot <- function(expr, width = 'auto', height = 'auto', res = 72, ...,
alt = NA,
env = parent.frame(), quoted = FALSE,
execOnResize = FALSE, outputArgs = list()
) {
func <- installExprFunction(
expr, "func", env, quoted,
label = "renderPlot",
# This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
# is called
..stacktraceon = TRUE
)
args <- list(...)
if (is.reactive(width))
widthWrapper <- width
else if (is.function(width))
widthWrapper <- reactive({ width() })
else
widthWrapper <- function() { width }
if (is.reactive(height))
heightWrapper <- height
else if (is.function(height))
heightWrapper <- reactive({ height() })
else
heightWrapper <- function() { height }
if (is.reactive(alt))
altWrapper <- alt
else if (is.function(alt))
altWrapper <- reactive({ alt() })
else
altWrapper <- function() { alt }
# This is the function that will be used as getDims by default, but it can be
# overridden (which happens when bindCache() is used).
getDimsDefault <- function() {
width <- widthWrapper()
height <- heightWrapper()
# Note that these are reactive calls. A change to the width and height
# will inherently cause a reactive plot to redraw (unless width and
# height were explicitly specified).
if (width == 'auto')
width <- session$clientData[[paste0('output_', outputName, '_width')]]
if (height == 'auto')
height <- session$clientData[[paste0('output_', outputName, '_height')]]
list(width = width, height = height)
}
# Vars to store session and output, so that they can be accessed from
# the plotObj() reactive.
session <- NULL
outputName <- NULL
getDims <- NULL
# Calls drawPlot, invoking the user-provided `func` (which may or may not
# return a promise). The idea is that the (cached) return value from this
# reactive can be used for varying width/heights, as it includes the
# displaylist, which is resolution independent.
drawReactive <- reactive(label = "plotObj", {
hybrid_chain(
{
# If !execOnResize, don't invalidate when width/height changes.
dims <- if (execOnResize) getDims() else isolate(getDims())
pixelratio <- session$clientData$pixelratio %||% 1
do.call("drawPlot", c(
list(
name = outputName,
session = session,
func = func,
width = dims$width,
height = dims$height,
alt = altWrapper(),
pixelratio = pixelratio,
res = res
), args))
},
catch = function(reason) {
# Non-isolating read. A common reason for errors in plotting is because
# the dimensions are too small. By taking a dependency on width/height,
# we can try again if the plot output element changes size.
getDims()
# Propagate the error
stop(reason)
}
)
})
# This function is the one that's returned from renderPlot(), and gets
# wrapped in an observer when the output value is assigned.
# The `get_dims` parameter defaults to `getDimsDefault`. However, it can be
# overridden, so that `bindCache` can use a different version.
renderFunc <- function(shinysession, name, ..., get_dims = getDimsDefault) {
outputName <<- name
session <<- shinysession
if (is.null(getDims)) getDims <<- get_dims
hybrid_chain(
drawReactive(),
function(result) {
dims <- getDims()
pixelratio <- session$clientData$pixelratio %||% 1
result <- do.call("resizeSavedPlot", c(
list(name, shinysession, result, dims$width, dims$height, altWrapper(), pixelratio, res),
args
))
result$img
}
)
}
# If renderPlot isn't going to adapt to the height of the div, then the
# div needs to adapt to the height of renderPlot. By default, plotOutput
# sets the height to 400px, so to make it adapt we need to override it
# with NULL.
outputFunc <- plotOutput
if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL)
markedFunc <- markRenderFunction(
outputFunc,
renderFunc,
outputArgs,
cacheHint = list(userExpr = installedFuncExpr(func), res = res)
)
class(markedFunc) <- c("shiny.renderPlot", class(markedFunc))
markedFunc
}
resizeSavedPlot <- function(name, session, result, width, height, alt, pixelratio, res, ...) {
if (isTRUE(result$img$width == width && result$img$height == height &&
result$pixelratio == pixelratio && result$res == res)) {
return(result)
}
if (isNamespaceLoaded("showtext")) {
showtextOpts <- showtext::showtext_opts(dpi = res*pixelratio)
on.exit({showtext::showtext_opts(showtextOpts)}, add = TRUE)
}
coordmap <- NULL
outfile <- plotPNG(function() {
grDevices::replayPlot(result$recordedPlot)
coordmap <<- getCoordmap(result$plotResult, width*pixelratio, height*pixelratio, res*pixelratio)
}, width = width*pixelratio, height = height*pixelratio, res = res*pixelratio, ...)
on.exit(unlink(outfile), add = TRUE)
result$img <- list(
src = session$fileUrl(name, outfile, contentType = "image/png"),
width = width,
height = height,
alt = result$alt,
coordmap = coordmap,
error = attr(coordmap, "error", exact = TRUE)
)
result
}
drawPlot <- function(name, session, func, width, height, alt, pixelratio, res, ...) {
# 1. Start PNG
# 2. Enable displaylist recording
# 3. Call user-defined func
# 4. Print/save result, if visible
# 5. Snapshot displaylist
# 6. Form coordmap
# 7. End PNG (in finally)
# 8. Form img tag
# 9. Return img, value, displaylist, coordmap
# 10. On error, take width and height dependency
outfile <- tempfile(fileext='.png') # If startPNG throws, this could leak. Shrug.
device <- startPNG(outfile, width*pixelratio, height*pixelratio, res = res*pixelratio, ...)
domain <- createGraphicsDevicePromiseDomain(device)
grDevices::dev.control(displaylist = "enable")
# In some cases (at least when `png(type='cairo')), showtext's font
# rendering needs to know about the device's resolution to work properly.
# I don't see any immediate harm in setting the dpi option for any device,
# but it's worth noting that the option doesn't currently work with CairoPNG.
# https://github.com/yixuan/showtext/issues/33
showtextOpts <- if (isNamespaceLoaded("showtext")) {
showtext::showtext_opts(dpi = res*pixelratio)
} else {
NULL
}
hybrid_chain(
hybrid_chain(
promises::with_promise_domain(domain, {
hybrid_chain(
func(),
function(value) {
res <- withVisible(value)
if (res$visible) {
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
print.ggplot <- custom_print.ggplot
# Use capture.output to squelch printing to the actual console; we
# are only interested in plot output
utils::capture.output({
# This ..stacktraceon.. negates the ..stacktraceoff.. that wraps
# the call to plotFunc. The value needs to be printed just in case
# it's an object that requires printing to generate plot output,
# similar to ggplot2. But for base graphics, it would already have
# been rendered when func was called above, and the print should
# have no effect.
result <- ..stacktraceon..(print(res$value))
# TODO jcheng 2017-04-11: Verify above ..stacktraceon..
})
result
} else {
# Not necessary, but I wanted to make it explicit
NULL
}
},
function(value) {
list(
plotResult = value,
recordedPlot = grDevices::recordPlot(),
coordmap = getCoordmap(value, width*pixelratio, height*pixelratio, res*pixelratio),
pixelratio = pixelratio,
alt = if (anyNA(alt)) getAltText(value) else alt,
res = res
)
}
)
}),
finally = function() {
grDevices::dev.off(device)
if (length(showtextOpts)) {
showtext::showtext_opts(showtextOpts)
}
}
),
function(result) {
result$img <- dropNulls(list(
src = session$fileUrl(name, outfile, contentType = 'image/png'),
width = width,
height = height,
alt = result$alt,
coordmap = result$coordmap,
# Get coordmap error message if present
error = attr(result$coordmap, "error", exact = TRUE)
))
result
},
finally = function() {
unlink(outfile)
}
)
}
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
custom_print.ggplot <- function(x) {
grid::grid.newpage()
build <- ggplot2::ggplot_build(x)
gtable <- ggplot2::ggplot_gtable(build)
grid::grid.draw(gtable)
structure(list(
build = build,
gtable = gtable
), class = "ggplot_build_gtable")
}
# Infer alt text description from renderPlot() value
# (currently just ggplot2 is supported)
getAltText <- function(x, default = "Plot object") {
# Since, inside renderPlot(), custom_print.ggplot()
# overrides print.ggplot, this class indicates a ggplot()
if (!inherits(x, "ggplot_build_gtable")) {
return(default)
}
# ggplot2::get_alt_text() was added in v3.3.4
# https://github.com/tidyverse/ggplot2/pull/4482
get_alt <- getNamespace("ggplot2")$get_alt_text
if (!is.function(get_alt)) {
return(default)
}
alt <- paste(get_alt(x$build), collapse = " ")
if (nzchar(alt)) alt else default
}
# The coordmap extraction functions below return something like the examples
# below. For base graphics:
# plot(mtcars$wt, mtcars$mpg)
# str(getPrevPlotCoordmap(400, 300))
# List of 2
# $ panels:List of 1
# ..$ :List of 4
# .. ..$ domain :List of 4
# .. .. ..$ left : num 1.36
# .. .. ..$ right : num 5.58
# .. .. ..$ bottom: num 9.46
# .. .. ..$ top : num 34.8
# .. ..$ range :List of 4
# .. .. ..$ left : num 65.6
# .. .. ..$ right : num 366
# .. .. ..$ bottom: num 238
# .. .. ..$ top : num 48.2
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ mapping: Named list()
# $ dims :List of 2
# ..$ width : num 400
# ..$ height: num 300
#
# For ggplot2, first you need to define the print.ggplot function from inside
# renderPlot, then use it to print the plot:
# print.ggplot <- function(x) {
# grid::grid.newpage()
#
# build <- ggplot2::ggplot_build(x)
#
# gtable <- ggplot2::ggplot_gtable(build)
# grid::grid.draw(gtable)
#
# structure(list(
# build = build,
# gtable = gtable
# ), class = "ggplot_build_gtable")
# }
#
# p <- print(ggplot(mtcars, aes(wt, mpg)) + geom_point())
# str(getGgplotCoordmap(p, 400, 300, 72))
# List of 2
# $ panels:List of 1
# ..$ :List of 8
# .. ..$ panel : num 1
# .. ..$ row : num 1
# .. ..$ col : num 1
# .. ..$ panel_vars: Named list()
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 4
# .. .. ..$ left : num 1.32
# .. .. ..$ right : num 5.62
# .. .. ..$ bottom: num 9.22
# .. .. ..$ top : num 35.1
# .. ..$ mapping :List of 2
# .. .. ..$ x: chr "wt"
# .. .. ..$ y: chr "mpg"
# .. ..$ range :List of 4
# .. .. ..$ left : num 33.3
# .. .. ..$ right : num 355
# .. .. ..$ bottom: num 328
# .. .. ..$ top : num 5.48
# $ dims :List of 2
# ..$ width : num 400
# ..$ height: num 300
#
# With a faceted ggplot2 plot, the outer list contains two objects, each of
# which represents one panel. In this example, there is one panelvar, but there
# can be up to two of them.
# p <- print(ggplot(mpg) + geom_point(aes(fl, cty), alpha = 0.2) + facet_wrap(~drv, scales = "free_x"))
# str(getGgplotCoordmap(p, 500, 400, 72))
# List of 2
# $ panels:List of 3
# ..$ :List of 8
# .. ..$ panel : num 1
# .. ..$ row : int 1
# .. ..$ col : int 1
# .. ..$ panel_vars:List of 1
# .. .. ..$ panelvar1: chr "4"
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 5
# .. .. ..$ left : num 0.4
# .. .. ..$ right : num 4.6
# .. .. ..$ bottom : num 7.7
# .. .. ..$ top : num 36.3
# .. .. ..$ discrete_limits:List of 1
# .. .. .. ..$ x: chr [1:4] "d" "e" "p" "r"
# .. ..$ mapping :List of 3
# .. .. ..$ x : chr "fl"
# .. .. ..$ y : chr "cty"
# .. .. ..$ panelvar1: chr "drv"
# .. ..$ range :List of 4
# .. .. ..$ left : num 33.3
# .. .. ..$ right : num 177
# .. .. ..$ bottom: num 448
# .. .. ..$ top : num 23.1
# ..$ :List of 8
# .. ..$ panel : num 2
# .. ..$ row : int 1
# .. ..$ col : int 2
# .. ..$ panel_vars:List of 1
# .. .. ..$ panelvar1: chr "f"
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 5
# .. .. ..$ left : num 0.4
# .. .. ..$ right : num 5.6
# .. .. ..$ bottom : num 7.7
# .. .. ..$ top : num 36.3
# .. .. ..$ discrete_limits:List of 1
# .. .. .. ..$ x: chr [1:5] "c" "d" "e" "p" ...
# .. ..$ mapping :List of 3
# .. .. ..$ x : chr "fl"
# .. .. ..$ y : chr "cty"
# .. .. ..$ panelvar1: chr "drv"
# .. ..$ range :List of 4
# .. .. ..$ left : num 182
# .. .. ..$ right : num 326
# .. .. ..$ bottom: num 448
# .. .. ..$ top : num 23.1
# ..$ :List of 8
# .. ..$ panel : num 3
# .. ..$ row : int 1
# .. ..$ col : int 3
# .. ..$ panel_vars:List of 1
# .. .. ..$ panelvar1: chr "r"
# .. ..$ log :List of 2
# .. .. ..$ x: NULL
# .. .. ..$ y: NULL
# .. ..$ domain :List of 5
# .. .. ..$ left : num 0.4
# .. .. ..$ right : num 3.6
# .. .. ..$ bottom : num 7.7
# .. .. ..$ top : num 36.3
# .. .. ..$ discrete_limits:List of 1
# .. .. .. ..$ x: chr [1:3] "e" "p" "r"
# .. ..$ mapping :List of 3
# .. .. ..$ x : chr "fl"
# .. .. ..$ y : chr "cty"
# .. .. ..$ panelvar1: chr "drv"
# .. ..$ range :List of 4
# .. .. ..$ left : num 331
# .. .. ..$ right : num 475
# .. .. ..$ bottom: num 448
# .. .. ..$ top : num 23.1
# $ dims :List of 2
# ..$ width : num 500
# ..$ height: num 400
getCoordmap <- function(x, width, height, res) {
if (inherits(x, "ggplot_build_gtable")) {
getGgplotCoordmap(x, width, height, res)
} else {
getPrevPlotCoordmap(width, height)
}
}
# Get a coordmap for the previous plot made with base graphics.
# Requires width and height of output image, in pixels.
# Must be called before the graphics device is closed.
getPrevPlotCoordmap <- function(width, height) {
usrCoords <- graphics::par('usr')
usrBounds <- usrCoords
if (graphics::par('xlog')) {
usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)]
}
if (graphics::par('ylog')) {
usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)]
}
# Wrapped in double list because other types of plots can have multiple panels.
panel_info <- list(list(
# Bounds of the plot area, in data space
domain = list(
left = usrCoords[1],
right = usrCoords[2],
bottom = usrCoords[3],
top = usrCoords[4]
),
# The bounds of the plot area, in DOM pixels
range = list(
left = graphics::grconvertX(usrBounds[1], 'user', 'ndc') * width,
right = graphics::grconvertX(usrBounds[2], 'user', 'ndc') * width,
bottom = (1-graphics::grconvertY(usrBounds[3], 'user', 'ndc')) * height - 1,
top = (1-graphics::grconvertY(usrBounds[4], 'user', 'ndc')) * height - 1
),
log = list(
x = if (graphics::par('xlog')) 10 else NULL,
y = if (graphics::par('ylog')) 10 else NULL
),
# We can't extract the original variable names from a base graphic.
# `mapping` is an empty _named_ list, so that it is converted to an object
# (not an array) in JSON.
mapping = list(x = NULL)[0]
))
list(
panels = panel_info,
dims = list(
width = width,
height =height
)
)
}
# Given a ggplot_build_gtable object, return a coordmap for it.
getGgplotCoordmap <- function(p, width, height, res) {
if (!inherits(p, "ggplot_build_gtable"))
return(NULL)
tryCatch({
# Get info from built ggplot object
panel_info <- find_panel_info(p$build)
# Get ranges from gtable - it's possible for this to return more elements than
# info, because it calculates positions even for panels that aren't present.
# This can happen with facet_wrap.
ranges <- find_panel_ranges(p$gtable, res)
for (i in seq_along(panel_info)) {
panel_info[[i]]$range <- ranges[[i]]
}
return(
list(
panels = panel_info,
dims = list(
width = width,
height = height
)
)
)
}, error = function(e) {
# If there was an error extracting info from the ggplot object, just return
# a list with the error message.
return(structure(list(), error = e$message))
})
}
find_panel_info <- function(b) {
# Structure of ggplot objects changed after 2.1.0. After 2.2.1, there was a
# an API for extracting the necessary information.
ggplot_ver <- get_package_version("ggplot2")
if (ggplot_ver > "2.2.1") {
find_panel_info_api(b)
} else if (ggplot_ver > "2.1.0") {
find_panel_info_non_api(b, ggplot_format = "new")
} else {
find_panel_info_non_api(b, ggplot_format = "old")
}
}
# This is for ggplot2>2.2.1, after an API was introduced for extracting
# information about the plot object.
find_panel_info_api <- function(b) {
# Given a built ggplot object, return x and y domains (data space coords) for
# each panel.
layout <- ggplot2::summarise_layout(b)
coord <- ggplot2::summarise_coord(b)
layers <- ggplot2::summarise_layers(b)
`%NA_OR%` <- function(x, y) {
if (is_na(x)) y else x
}
# Given x and y scale objects and a coord object, return a list that has
# the bases of log transformations for x and y, or NULL if it's not a
# log transform.
get_log_bases <- function(xscale, yscale, coord) {
# Given a transform object, find the log base; if the transform object is
# NULL, or if it's not a log transform, return NA.
get_log_base <- function(trans) {
if (!is.null(trans) && grepl("^log-", trans$name)) {
environment(trans$transform)$base
} else {
NA_real_
}
}
# First look for log base in scale, then coord; otherwise NULL.
list(
x = get_log_base(xscale$trans) %NA_OR% coord$xlog %NA_OR% NULL,
y = get_log_base(yscale$trans) %NA_OR% coord$ylog %NA_OR% NULL
)
}
# Given x/y min/max, and the x/y scale objects, create a list that
# represents the domain. Note that the x/y min/max should be taken from
# the layout summary table, not the scale objects.
get_domain <- function(xmin, xmax, ymin, ymax, xscale, yscale) {
is_reverse <- function(scale) {
identical(scale$trans$name, "reverse")
}
domain <- list(
left = xmin,
right = xmax,
bottom = ymin,
top = ymax
)
if (is_reverse(xscale)) {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (is_reverse(yscale)) {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain <- add_discrete_limits(domain, xscale, "x")
domain <- add_discrete_limits(domain, yscale, "y")
domain
}
# Rename the items in vars to have names like panelvar1, panelvar2.
rename_panel_vars <- function(vars) {
for (i in seq_along(vars)) {
names(vars)[i] <- paste0("panelvar", i)
}
vars
}
get_mappings <- function(layers, layout, coord) {
# For simplicity, we'll just use the mapping from the first layer of the
# ggplot object. The original uses quoted expressions; convert to
# character.
mapping <- layers$mapping[[1]]
# In ggplot2 <=2.2.1, the mappings are expressions. In later versions, they
# are quosures. `deparse(quo_squash(x))` will handle both cases.
# as.character results in unexpected behavior for expressions like `wt/2`,
# which is why we use deparse.
mapping <- lapply(mapping, function(x) deparse(rlang::quo_squash(x)))
# If either x or y is not present, give it a NULL entry.
mapping <- mergeVectors(list(x = NULL, y = NULL), mapping)
# The names (not values) of panel vars are the same across all panels,
# so just look at the first one. Also, the order of panel vars needs
# to be reversed.
vars <- rev(layout$vars[[1]])
for (i in seq_along(vars)) {
mapping[[paste0("panelvar", i)]] <- names(vars)[i]
}
if (isTRUE(coord$flip)) {
mapping[c("x", "y")] <- mapping[c("y", "x")]
}
mapping
}
# Mapping is constant across all panels, so get it here and reuse later.
mapping <- get_mappings(layers, layout, coord)
# If coord_flip is used, these need to be swapped
flip_xy <- function(layout) {
l <- layout
l$xscale <- layout$yscale
l$yscale <- layout$xscale
l$xmin <- layout$ymin
l$xmax <- layout$ymax
l$ymin <- layout$xmin
l$ymax <- layout$xmax
l
}
if (coord$flip) {
layout <- flip_xy(layout)
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row, use it as a list. The (former) list-cols are still
# in lists, so we need to unwrap them.
l <- as.list(layout[i, ])
l$vars <- l$vars[[1]]
l$xscale <- l$xscale[[1]]
l$yscale <- l$yscale[[1]]
list(
panel = as.numeric(l$panel),
row = l$row,
col = l$col,
# Rename panel vars. They must also be in reversed order.
panel_vars = rename_panel_vars(rev(l$vars)),
log = get_log_bases(l$xscale, l$yscale, coord),
domain = get_domain(l$xmin, l$xmax, l$ymin, l$ymax, l$xscale, l$yscale),
mapping = mapping
)
})
}
# This is for ggplot2<=2.2.1, before an API was introduced for extracting
# information about the plot object. The "old" format was used before 2.1.0.
# The "new" format was used after 2.1.0, up to 2.2.1. The reason these two
# formats are mixed together in a single function is historical, and it's not
# worthwhile to separate them at this point.
find_panel_info_non_api <- function(b, ggplot_format) {
# Given a single range object (representing the data domain) from a built
# ggplot object, return the domain.
find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) {
if (ggplot_format == "new") {
range <- b$layout$panel_ranges[[panel_num]]
} else {
range <- b$panel$ranges[[panel_num]]
}
domain <- list(
left = range$x.range[1],
right = range$x.range[2],
bottom = range$y.range[1],
top = range$y.range[2]
)
# Check for reversed scales
if (ggplot_format == "new") {
xscale <- b$layout$panel_scales$x[[scalex_num]]
yscale <- b$layout$panel_scales$y[[scaley_num]]
} else {
xscale <- b$panel$x_scales[[scalex_num]]
yscale <- b$panel$y_scales[[scaley_num]]
}
if (!is.null(xscale$trans) && xscale$trans$name == "reverse") {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (!is.null(yscale$trans) && yscale$trans$name == "reverse") {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain <- add_discrete_limits(domain, xscale, "x")
domain <- add_discrete_limits(domain, yscale, "y")
domain
}
# Given built ggplot object, return object with the log base for x and y if
# there are log scales or coord transforms.
check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) {
# Given a vector of transformation names like c("log-10", "identity"),
# return the first log base, like 10. If none are present, return NULL.
extract_log_base <- function(names) {
names <- names[grepl("^log-", names)]
if (length(names) == 0)
return(NULL)
names <- names[1]
as.numeric(sub("^log-", "", names))
}
# Look for log scales and log coord transforms. People shouldn't use both.
x_names <- character(0)
y_names <- character(0)
# Continuous scales have a trans; discrete ones don't
if (ggplot_format == "new") {
if (!is.null(b$layout$panel_scales$x[[scalex_num]]$trans))
x_names <- b$layout$panel_scales$x[[scalex_num]]$trans$name
if (!is.null(b$layout$panel_scales$y[[scaley_num]]$trans))
y_names <- b$layout$panel_scales$y[[scaley_num]]$trans$name
} else {
if (!is.null(b$panel$x_scales[[scalex_num]]$trans))
x_names <- b$panel$x_scales[[scalex_num]]$trans$name
if (!is.null(b$panel$y_scales[[scaley_num]]$trans))
y_names <- b$panel$y_scales[[scaley_num]]$trans$name
}
coords <- b$plot$coordinates
if (!is.null(coords$trans)) {
if (!is.null(coords$trans$x))
x_names <- c(x_names, coords$trans$x$name)
if (!is.null(coords$trans$y))
y_names <- c(y_names, coords$trans$y$name)
}
# Keep only scale/trans names that start with "log-"
x_names <- x_names[grepl("^log-", x_names)]
y_names <- y_names[grepl("^log-", y_names)]
# Extract the log base from the trans name -- a string like "log-10".
list(
x = extract_log_base(x_names),
y = extract_log_base(y_names)
)
}
# Given a built ggplot object, return a named list of variables mapped to x
# and y. This function will be called for each panel, but in practice the
# result is always the same across panels, so we'll cache the result.
mappings_cache <- NULL
find_plot_mappings <- function(b) {
if (!is.null(mappings_cache))
return(mappings_cache)
# lapply'ing as.character results in unexpected behavior for expressions
# like `wt/2`. This works better.
mappings <- as.list(as.character(b$plot$mapping))
# If x or y mapping is missing, look in each layer for mappings and return
# the first one.
missing_mappings <- setdiff(c("x", "y"), names(mappings))
if (length(missing_mappings) != 0) {
# Grab mappings for each layer
layer_mappings <- lapply(b$plot$layers, function(layer) {
lapply(layer$mapping, as.character)
})
# Get just the first x or y value in the combined list of plot and layer
# mappings.
mappings <- c(list(mappings), layer_mappings)
mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL),
function(init, m) {
# Can't use m$x/m$y; you get a partial match with xintercept/yintercept
if (is.null(init[["x"]]) && !is.null(m[["x"]])) init$x <- m[["x"]]
if (is.null(init[["y"]]) && !is.null(m[["y"]])) init$y <- m[["y"]]
init
}
)
}
# Look for CoordFlip
if (inherits(b$plot$coordinates, "CoordFlip")) {
mappings[c("x", "y")] <- mappings[c("y", "x")]
}
mappings_cache <<- mappings
mappings
}
if (ggplot_format == "new") {
layout <- b$layout$panel_layout
} else {
layout <- b$panel$layout
}
# Convert factor to numbers
layout$PANEL <- as.integer(as.character(layout$PANEL))
# Names of facets
facet_vars <- NULL
if (ggplot_format == "new") {
facet <- b$layout$facet
if (inherits(facet, "FacetGrid")) {
facet_vars <- vapply(c(facet$params$cols, facet$params$rows), as.character, character(1))
} else if (inherits(facet, "FacetWrap")) {
facet_vars <- vapply(facet$params$facets, as.character, character(1))
}
} else {
facet <- b$plot$facet
if (inherits(facet, "grid")) {
facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1))
} else if (inherits(facet, "wrap")) {
facet_vars <- vapply(facet$facets, as.character, character(1))
}
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row
l <- layout[i, ]
scale_x <- l$SCALE_X
scale_y <- l$SCALE_Y
mapping <- find_plot_mappings(b)
# For each of the faceting variables, get the value of that variable in
# the current panel. Default to empty _named_ list so that it's sent as a
# JSON object, not array.
panel_vars <- list(a = NULL)[0]
for (i in seq_along(facet_vars)) {
var_name <- facet_vars[[i]]
vname <- paste0("panelvar", i)
mapping[[vname]] <- var_name
panel_vars[[vname]] <- l[[var_name]]
}
list(
panel = l$PANEL,
row = l$ROW,
col = l$COL,
panel_vars = panel_vars,
scale_x = scale_x,
scale_y = scale_x,
log = check_log_scales(b, scale_x, scale_y),
domain = find_panel_domain(b, l$PANEL, scale_x, scale_y),
mapping = mapping
)
})
}
# Use public API for getting the unit's type (grid::unitType(), added in R 4.0)
# https://github.com/wch/r-source/blob/f9b8a42/src/library/grid/R/unit.R#L179
getUnitType <- function(u) {
tryCatch(
get("unitType", envir = asNamespace("grid"))(u),
error = function(e) attr(u, "unit", exact = TRUE)
)
}
# Given a gtable object, return the x and y ranges (in pixel dimensions)
find_panel_ranges <- function(g, res) {
# Given a vector of unit objects, return logical vector indicating which ones
# are "null" units. These units use the remaining available width/height --
# that is, the space not occupied by elements that have an absolute size.
is_null_unit <- function(x) {
# A vector of units can be either a list of individual units (a unit.list
# object), each with their own set of attributes, or an atomic vector with
# one set of attributes. ggplot2 switched from the former (in version
# 1.0.1) to the latter. We need to make sure that we get the correct
# result in both cases.
if (inherits(x, "unit.list")) {
# For ggplot2 <= 1.0.1
vapply(x, FUN.VALUE = logical(1), function(u) {
isTRUE(getUnitType(u) == "null")
})
} else {
# For later versions of ggplot2
getUnitType(x) == "null"
}
}
# Workaround for a bug in the quartz device. If you have a 400x400 image and
# run `convertWidth(unit(1, "npc"), "native")`, the result will depend on
# res setting of the device. If res=72, then it returns 400 (as expected),
# but if, e.g., res=96, it will return 300, which is incorrect.
devScaleFactor <- 1
if (grepl("quartz", names(grDevices::dev.cur()), fixed = TRUE)) {
devScaleFactor <- res / 72
}
# Convert a unit (or vector of units) to a numeric vector of pixel sizes
h_px <- function(x) {
devScaleFactor * grid::convertHeight(x, "native", valueOnly = TRUE)
}
w_px <- function(x) {
devScaleFactor * grid::convertWidth(x, "native", valueOnly = TRUE)
}
# Given a vector of relative sizes (in grid units), and a function for
# converting grid units to numeric pixels, return a list with: known pixel
# dimensions, scalable dimensions, and the overall space for the scalable
# objects.
find_size_info <- function(rel_sizes, unit_to_px) {
# Total pixels (in height or width)
total_px <- unit_to_px(grid::unit(1, "npc"))
# Calculate size of all panel(s) together. Panels (and only panels) have
# null size.
null_idx <- is_null_unit(rel_sizes)
# All the absolute heights. At this point, null heights are 0. We need to
# calculate them separately and add them in later.
px_sizes <- unit_to_px(rel_sizes)
# Mark the null heights as NA.
px_sizes[null_idx] <- NA_real_
# The plotting panels all are 'null' units.
null_sizes <- rep(NA_real_, length(rel_sizes))
# Workaround for `[.unit` forbidding zero-length subsets
# https://github.com/wch/r-source/blob/f9b8a42/src/library/grid/R/unit.R#L448-L450
if (length(null_idx)) {
null_sizes[null_idx] <- as.numeric(rel_sizes[null_idx])
}
# Total size allocated for panels is the total image size minus absolute
# (non-panel) elements.
panel_px_total <- total_px - sum(px_sizes, na.rm = TRUE)
# Size of a 1null unit
null_px <- abs(panel_px_total / sum(null_sizes, na.rm = TRUE))
# This returned list contains:
# * px_sizes: A vector of known pixel dimensions. The values that were
# null units will be assigned NA. The null units are ones that scale
# when the plotting area is resized.
# * null_sizes: A vector of the null units. All others will be assigned
# NA. The null units often are 1, but they may be any value, especially
# when using coord_fixed.
# * null_px: The size (in pixels) of a 1null unit.
# * null_px_scaled: The size (in pixels) of a 1null unit when scaled to
# fit a smaller dimension (used for plots with coord_fixed).
list(
px_sizes = abs(px_sizes),
null_sizes = null_sizes,
null_px = null_px,
null_px_scaled = null_px
)
}
# Given a size_info, return absolute pixel positions
size_info_to_px <- function(info) {
px_sizes <- info$px_sizes
null_idx <- !is.na(info$null_sizes)
px_sizes[null_idx] <- info$null_sizes[null_idx] * info$null_px_scaled
# If this direction is scaled down because of coord_fixed, we need to add an
# offset so that the pixel locations are centered.
offset <- (info$null_px - info$null_px_scaled) *
sum(info$null_sizes, na.rm = TRUE) / 2
# Get absolute pixel positions
cumsum(px_sizes) + offset
}
heights_info <- find_size_info(g$heights, h_px)
widths_info <- find_size_info(g$widths, w_px)
if (g$respect) {
# This is a plot with coord_fixed. The grid 'respect' option means to use
# the same pixel value for 1null, for width and height. We want the
# smaller of the two values -- that's what makes the plot fit in the
# viewport.
null_px_min <- min(heights_info$null_px, widths_info$null_px)
heights_info$null_px_scaled <- null_px_min
widths_info$null_px_scaled <- null_px_min
}
# Convert to absolute pixel positions
y_pos <- size_info_to_px(heights_info)
x_pos <- size_info_to_px(widths_info)
# Match up the pixel dimensions to panels
layout <- g$layout
# For panels:
# * For facet_wrap, they'll be named "panel-1", "panel-2", etc.
# * For no facet or facet_grid, they'll just be named "panel". For
# facet_grid, we need to re-order the layout table. Assume that panel
# numbers go from left to right, then next row.
# Assign a number to each panel, corresponding to PANEl in the built ggplot
# object.
layout <- layout[grepl("^panel", layout$name), ]
layout <- layout[order(layout$t, layout$l), ]
layout$panel <- seq_len(nrow(layout))
# Return list of lists, where each inner list has left, right, top, bottom
# values for a panel
lapply(seq_len(nrow(layout)), function(i) {
p <- layout[i, , drop = FALSE]
list(
left = x_pos[p$l - 1],
right = x_pos[p$r],
bottom = y_pos[p$b],
top = y_pos[p$t - 1]
)
})
}
# Remember the x/y limits of discrete axes. This info is
# necessary to properly inverse map the numeric (i.e., trained)
# positions back to the data scale, for example:
# https://github.com/rstudio/shiny/pull/2410#issuecomment-487783828
# https://github.com/rstudio/shiny/pull/2410#issuecomment-488100881
#
# Eventually, we may want to consider storing the entire ggplot2
# object server-side and querying information from that object
# as we need it...that's the only way we'll ever be able to
# faithfully brush examples like this:
# https://github.com/rstudio/shiny/issues/2411
add_discrete_limits <- function(domain, scale, var = "x") {
var <- match.arg(var, c("x", "y"))
if (!is.function(scale$is_discrete) || !is.function(scale$get_limits)) return(domain)
if (scale$is_discrete()) {
domain$discrete_limits[[var]] <- scale$get_limits()
}
domain
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.