R/plausible.values.raschtype.R

Defines functions .adj.groupmean .sampling.latent.regression.raschtype .pv.draw plausible.value.imputation.raschtype

Documented in plausible.value.imputation.raschtype

## File Name: plausible.values.raschtype.R
## File Version: 2.27

#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# Routine for plausible value imputation
plausible.value.imputation.raschtype <- function( data=NULL,
        f.yi.qk=NULL, X,
        Z=NULL, beta0=rep(0,ncol(X)), sig0=1,
        b=rep(1,ncol(X)),  a=rep(1, length(b) ), c=rep(0, length(b) ),
        d=1+0*b, alpha1=0, alpha2=0,
        theta.list=seq(-5,5,len=50), cluster=NULL,
        iter, burnin, nplausible=1, printprogress=TRUE )
{
    #........................................................................
    # INPUT:
    # data  ... matrix of dichotomous item responses
    # X     ... matrix of covariates (background variables)
    # Z     ... matrix of covariates allowing for heteroscedasticity
    # beta0 ... initial beta regression coefficients
    # sig0  ... initial residual standard deviation
    # b ... item difficulties
    # a ... item discrimination
    # c ... guessing parameter
    # theta.list ... grid of theta values for posterior density evaluation
    # cluster ... indicates cluster
    # nplausible    ...  number of plausible values
    # iter  ... number of iterations
    # burnin ... number of burn-in iterations
    #...........................................................................
    # indexes for PV estimation
    if ( ! is.null(data) ){
        data <- as.matrix(data)
        if (is.null(colnames(data)) ){ colnames(data) <- paste( "item", seq(1, ncol(data)), sep="") }
        dfrout <- data.frame( "item"=colnames(data), "b"=b, "a"=a, "c"=c, "d"=d )
        cat("\nIRT Plausible Value Imputation - Rasch type model\n")
        nd <- nrow(data)
                        } else {
            nd <- nrow(f.yi.qk)
                    }
    pv.indexes <- sort( unique( round( sort( seq( iter, burnin +1,
                    len=nplausible ) ) )))
    coefs <- matrix( 0, nrow=iter, ncol=ncol(X) + ( ! is.null(cluster) ) )
    pvdraws <- matrix( 0, nrow=length(pv.indexes), ncol=nd )
    # matrices
    X <- as.matrix(X)
    if ( is.null(Z) ){ Z <- matrix( 1, nrow=nrow(X), ncol=1) }
    coefsZ <- matrix( 0, nrow=iter, ncol=ncol(Z))

    #***************
    # Data preparation
    #***
    # data preparation
    if ( ! is.null(data)){
        y <- data
        y[ is.na(y)] <- 0
        dat2.resp <- 1-is.na(data)
        I <- ncol(y)    # number of items
        dat1 <- data.frame( 1+0*y[,1], 1 )
                    }
    LT <- length( theta.list )
    pi.k <- sirt_dnorm( theta.list )
    theta.kM <- matrix( theta.list, nrow=nrow(X),
                    ncol=length(theta.list), byrow=TRUE )
    theta.kM2 <- theta.kM^2
    n <- nrow(X)
    # calculate likelihood if not provided
    if ( is.null( f.yi.qk) ){
        f.yi.qk <- .e.step.raschtype( dat1=dat1, dat2=y, dat2.resp=dat2.resp,
            theta.k=theta.list, pi.k=pi.k, I=I,
            n=nrow(y), b=b, fixed.a=a, fixed.c=c,  fixed.d=d,
            alpha1=alpha1, alpha2=alpha2, group=NULL, pseudoll=0, f.qk.yi=NULL )$f.yi.qk
                    }
    post <- f.yi.qk / rowSums( f.yi.qk )

    ################################
    # begin iterations
    for (ii in 1:iter){
    #   ii <- 1
        # draw plausible values
        if ( ii==1 ){ X1 <- X }
        ########################
        # draw plausible values
        pv1 <- .pv.draw( f.yi.qk, X, beta0, sig0,
                    theta.list, pvdraw=1 )
        # calculate adjusted group mean in case of clustering
        if ( !  is.null( cluster ) ){
          X1 <- cbind( X, .adj.groupmean( variable=pv1$plausible.value[,1],
                                cluster ) )
                                } else { X1 <- X }
        # sample latent regression model / draw regression parameters
        s2 <- .sampling.latent.regression.raschtype( pv=pv1$plausible.value[,1],
                    X=X1, Z=as.matrix(Z) )
        beta0 <- s2$samp.beta   # sampling of regression coefficients
        sig0 <- s2$fitted.sigma
        coefs[ii,] <- beta0
        coefsZ[ii,] <- s2$samp.gamma

        if( ii %in% pv.indexes  ){
            pvdraws[ which( pv.indexes==ii), ] <- pv1$plausible.value[,1]
                                }
        if ( printprogress ){
                if (ii==1 ){ cat("\n Iteration ") }
                cat(paste(ii, ".",sep=""));
                utils::flush.console()
                if ( ( ii %% 10==0 ) | ( ii==iter  ) ){ cat("\n     ") }
                        }
                }
    cat("\n")
    # results pv draw object
    pv1[[  "plausible.value" ]]  <- NULL
    coefs <- coefs[ seq( burnin +1, iter ), ]
    res <- list( "coefsX"=coefs, "coefsZ"=coefsZ[seq( burnin +1, iter ),,drop=FALSE],
            "pvdraws"=t(pvdraws),
            "posterior"=pv1$posterior.density    ,
            "EAP"=pv1$EAP, "SE.EAP"=pv1$SE.EAP     , "pv.indexes"=pv.indexes )
    }
#*******************************************************************************************************
# data=data ; X=X ; weights=rep(1,nrow(data)) ;
#                                beta.init=rep(0,ncol(X)) ; sigma.init=1 ; max.parchange=.0001 ;
#                                theta.list=seq(-5,5,len=50) ; maxiter=300


#***********************************************************************************
# function for drawing plausible values (Raschtype model)
##NS export(plausible.value.draw.raschtype)
.pv.draw <- function( f.yi.qk, X, beta0, sig0,
                    theta.list, pvdraw=1 ){
    #..................................
    # recode missings
#    y <- data
#    y[ is.na(data) ] <- 1
#    respind <- 1 - is.na(data)
    sig0[ sig0 < 0] <- 0
 #   n <- nrow(y)
    # predicted values from latent regression
    M.Regr <- ( X %*% beta0 )[,1]
    if (length(sig0) > 1){ SD.Regr <- sig0 } else { SD.Regr <- rep( sig0, n ) }
    # matrix of theta values
    n <- nrow(X)
    l1 <- rep(1,n)
    theta.listM <- thetaM <- matrix( theta.list, nrow=n, ncol=length(theta.list),
        byrow=TRUE)
    # compute density resulting from regression
    dens.Regr <- sirt_dnorm( thetaM, mean=M.Regr, sd=SD.Regr )
    dens.total <- f.yi.qk * dens.Regr
    dens.total <- dens.total / rowSums( dens.total)
#   theta.listM <- outer( l1, theta.list )
    # mean of individual posterior distribution
    EAP <- rowSums( theta.listM * dens.total )
    # SD of posterior distribution
    SD.Post <- sqrt( rowSums( theta.listM^2 * dens.total ) -  EAP^2 )
    # one draw of plausible values
    if (  ! pvdraw ){ pvdraw <- NULL } else {
            pvdraw <- matrix( stats::rnorm( n*pvdraw,
                mean=rep(EAP,each=pvdraw), sd=rep(SD.Post,each=pvdraw) ), ncol=pvdraw, byrow=T )
                         }
    # results
    res <- list( "theta.grid"=theta.list, "posterior.density"=dens.total,
        "EAP"=EAP, "SE.EAP"=SD.Post,
        "plausible.value"=pvdraw, "M.Regr"=M.Regr, "SD.Regr"=SD.Regr )
    return(res)
    }
#***********************************************************************************

#.........................................................................
# sample parameters for latent regression model
.sampling.latent.regression.raschtype <- function( pv, X,
            Z=rep(1,length(pv)) ){
        # INPUT:
        # pv        ... draw of plausible values
        # X         ... matrix of covariates for latent regression model
        #                 intercept is not automatically included=> create vector of ones!!
        # Z         ... matrix of covariates for explaining residual variance
        #.............................................................
        # latent regression model
        mod <- stats::lm( pv ~ 0 + X )
        res <- list( "est.beta"=stats::coef(mod), "vcov.beta"=stats::vcov(mod) )
        # sample beta parameter
        res$samp.beta <- sirt_rmvnorm( 1, mean=res$est.beta, sigma=res$vcov.beta )
        # residual standard deviation
        n <- nrow(X)
        p <- ncol(X)
        res$est.sigma <- summary(mod)$sigma
        residuals.mod <- ( stats::resid(mod) )^2   * (n-1) / ( n - p - 1)
        mod1 <- stats::lm( residuals.mod ~ 0 + Z )
#        summary(mod1)
        # sample gamma coefficients for heteroscedasticity
        res$samp.gamma <- sirt_rmvnorm( 1, mean=stats::coef(mod1), sigma=stats::vcov(mod1) )
        res$fitted.sigma <- sqrt( stats::fitted(mod1) )
        res$lm.latent.regression <- mod
        res$lm.residualsd <- mod1
        return(res)
        }
#..............................................................................


        #*************************************************************
        # function to calculate adjusted mean: eliminate score on the individual
        # variable <- pv1$plausible.value[,1]
        .adj.groupmean <- function( variable, cluster ){
            a1 <- stats::aggregate( variable,    list( cluster ), mean  )
            a2 <- stats::aggregate( 1+0*variable,    list( cluster ), sum  )
            ind <- match( cluster, a1[,1] )
            ( a2[ind,2] * a1[ ind, 2] - variable ) / a2[ ind, 2]
                    }
    #*****************************************

Try the sirt package in your browser

Any scripts or data that you put into this service are public.

sirt documentation built on May 29, 2024, 8:43 a.m.