R/agexact.fit.R

Defines functions agexact.fit

Documented in agexact.fit

agexact.fit <- function(x, y, strata, offset, init, control,
			  weights, method, rownames,
                         resid=TRUE, nocenter=NULL)
    {
    if (!is.matrix(x)) stop("Invalid formula for cox fitting function")
    if (!is.null(weights) && any(weights!=1))
	  stop("Case weights are not supported for the exact method")
    n <- nrow(x)
    nvar <- ncol(x)
    if (ncol(y)==3) {
	start <- y[,1]
	stopp <- y[,2]
	event <- y[,3]
    }
    else {
	start <- rep(0,n)
	stopp <- y[,1]
	event <- y[,2]
    }

    # Sort the data (or rather, get a list of sorted indices)
    if (length(strata)==0) {
	sorted <- order(stopp, -event)
	newstrat <- as.integer(rep(0,n))
    }
    else {
	sorted <- order(strata, stopp, -event)
	strata <- (as.numeric(strata))[sorted]
	newstrat <- as.integer(c(1*(diff(strata)!=0), 1))
    }
    if (is.null(offset)) offset <- rep(0,n)

    sstart <- as.double(start[sorted])
    sstop <- as.double(stopp[sorted])
    sstat <- as.integer(event[sorted])

    if (is.null(nvar)) {
	# A special case: Null model.  Not worth coding up
	stop("Cannot handle a null model + exact calculation (yet)")
    }

    if (!is.null(init)) {
	if (length(init) != nvar) stop("Wrong length for inital values")
    }
    else init <- rep(0,nvar)

    # 2012 change: individually choose which variable to rescale
    # default: leave 0/1 variables along
    if (is.null(nocenter)) zero.one <- rep(FALSE, ncol(x))
    else zero.one <- apply(x, 2, function(z) all(z %in% nocenter))
    agfit <- .C(Cagexact, iter= as.integer(control$iter.max),
		   as.integer(n),
		   as.integer(nvar), sstart, sstop,
		   sstat,
		   x= x[sorted,],
		   as.double(offset[sorted]),
		   newstrat,
		   means = double(nvar),
		   coef= as.double(init),
		   u = double(nvar),
		   imat= double(nvar*nvar), loglik=double(2),
		   flag=integer(1),
		   double(2*nvar*nvar +nvar*4 + n),
		   integer(2*n),
		   as.double(control$eps),
		   as.double(control$toler.chol),
		   sctest=double(1), 
                   ifelse(zero.one, 0L, 1L))

    var <- matrix(agfit$imat,nvar,nvar)
    coef <- agfit$coef
    if (agfit$flag < nvar) which.sing <- diag(var)==0
    else which.sing <- rep(FALSE,nvar)

    infs <- abs(agfit$u %*% var)
    if (control$iter.max >1) {
	if (agfit$flag == 1000)
	       warning("Ran out of iterations and did not converge")
	    else {
		infs <- ((infs > control$eps) & 
			 infs > control$toler.inf*abs(coef))
		if (any(infs))
		warning(paste("Loglik converged before variable ",
			  paste((1:nvar)[infs],collapse=","),
			  "; beta may be infinite. "))
            }
    }

    names(coef) <- dimnames(x)[[2]]
    lp  <- x %*% coef + offset - sum(coef *agfit$means)
    score <- as.double(exp(lp[sorted]))
    coef[which.sing] <- NA

    if (resid) {
        agres <- .C(Cagmart,
		   as.integer(n),
		   as.integer(0),
		   sstart, sstop,
		   sstat,
		   score,
		   rep(1.0, n),
		   newstrat,
		   resid=double(n))

        resid <- double(n)
        resid[sorted] <- agres$resid
        names(resid) <- rownames
 
        rval <- list(coefficients  = coef,
                     var    = var,
                     loglik = agfit$loglik,
                     score  = agfit$sctest,
                     iter   = agfit$iter,
                     linear.predictors = lp,
                     residuals = resid,
                     means = agfit$means,
                     method= 'coxph')
    } else {
        rval <- list(coefficients  = coef,
                     var    = var,
                     loglik = agfit$loglik,
                     score  = agfit$sctest,
                     iter   = agfit$iter,
                     linear.predictors = lp,
                     means = agfit$means,
                     method= 'coxph')
    }       
    rval
}

Try the survival package in your browser

Any scripts or data that you put into this service are public.

survival documentation built on Aug. 24, 2021, 5:06 p.m.