inst/doc/compete.R

### R code from vignette source 'compete.Rnw'

###################################################
### code chunk number 1: compete.Rnw:23-29
###################################################
options(continue="  ", width=60)
options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1))))
pdf.options(pointsize=10) #text in graph about the same as regular text
options(contrasts=c("contr.treatment", "contr.poly")) #ensure default

library("survival")


###################################################
### code chunk number 2: sfig1
###################################################
getOption("SweaveHooks")[["fig"]]()
oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2))
cmat1 <- matrix(c(0,0,1,0), nrow=2, 
                dimnames=list(c("Alive", "Dead"), c("Alive", "Dead")))
statefig(c(1,1), cmat1, cex=1.5)

state4 <- c("0", "1", "2", "...")
cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4))
cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1
statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3))

states <- c("A", "D1", "D2", "D3")
cmat2 <- matrix(0, 4,4, dimnames=list(states, states))
cmat2[1, -1] <- 1
statefig(c(1,3), cmat2, cex=1.5)

state3 <- c("Health", "Illness", "Death")
cmat3 <- matrix(0, 3, 3, dimnames = list(state3, state3))
cmat3[1,2] <- cmat3[2,1] <- cmat3[-3, 3] <- 1
statefig(c(1,2), cmat3, offset=.03, cex=1.5)

state4 <- c("0", "1", "2", "...")
cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4))
cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1
statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3))
par(oldpar)


###################################################
### code chunk number 3: crfig2
###################################################
getOption("SweaveHooks")[["fig"]]()
par(mar=c(.1, .1, .1, .1))
frame()
oldpar <- par(usr=c(0,100,0,100))
# first figure
xx <- c(0, 10, 10, 0)
yy <- c(0, 0, 10, 10)
polygon(xx +10, yy+70) 
temp <- c(60, 80) 
for (j in 1:2) {
    polygon(xx + 30, yy+ temp[j])
    arrows(22, 70 + 3*j, 28, temp[j] +5, length=.1)
}
text(c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) 
text(25, 55, "Competing Risk")

# Second figure
polygon(xx +60, yy+70)  
for (j in 1:2) {
    polygon(xx + 80, yy+ temp[j])
    arrows(72, 70+ 3*j, 78, temp[j] +5, length=.1)
}
text(50+ c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) 
arrows(85, 78, 85, 72, length=.1)
text(75, 55, "Multi-state 1")

# third figure
polygon(xx+10, yy+25)
temp <- c(15, 35) 
for (j in 1:2) {
    polygon(2*xx +30, yy + temp[j])
    arrows(22, 25 + 3*j, 28, temp[j] +5, length=.1)
}
text(c(15, 40, 40), c(30, 20, 40),c("Entry", "Death w/o PCM", "PCM")) 
polygon(2*xx + 60, yy+temp[2])
arrows(52, 40, 58, 40, length=.1)
text(70, 40, "Death after PCM")
text(40, 10, "Multi-state 2")


###################################################
### code chunk number 4: mgus1
###################################################
getOption("SweaveHooks")[["fig"]]()
oldpar <- par(mfrow=c(1,2))
hist(mgus2$age, nclass=30, main='', xlab="Age")
with(mgus2, tapply(age, sex, mean))

mfit1 <- survfit(Surv(futime, death) ~ sex, data=mgus2)
mfit1
plot(mfit1, col=c(1,2), xscale=12, mark.time=FALSE, lwd=2,
     xlab="Years post diagnosis", ylab="Survival")
legend("topright", c("female", "male"), col=1:2, lwd=2, bty='n')
par(oldpar)


###################################################
### code chunk number 5: mgus2
###################################################
getOption("SweaveHooks")[["fig"]]()
etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
event <- with(mgus2, ifelse(pstat==0, 2*death, 1))
event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))
table(event)

mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2)
print(mfit2, rmean=240, scale=12)
mfit2$transitions

plot(mfit2, col=c(1,2,1,2), lty=c(2,2,1,1),
     mark.time=FALSE, lwd=2,  xscale=12,
     xlab="Years post diagnosis", ylab="Probability in State")
legend(240, .6, c("death:female", "death:male", "pcm:female", "pcm:male"), 
       col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')


###################################################
### code chunk number 6: mgus3
###################################################
getOption("SweaveHooks")[["fig"]]()
pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2)
plot(pcmbad[2], lwd=2, fun="event", conf.int=FALSE, xscale=12,
     xlab="Years post diagnosis", ylab="Fraction with PCM")
lines(mfit2[2,"pcm"], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE)
legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"),
       col=1, lwd=2, lty=c(1,2), bty='n')


###################################################
### code chunk number 7: mgus4
###################################################
ptemp <- with(mgus2, ifelse(ptime==futime & pstat==1, ptime-.1, ptime))
data3 <- tmerge(mgus2, mgus2,  id=id, death=event(futime, death),
                  pcm = event(ptemp, pstat))
data3 <- tmerge(data3, data3, id, enum=cumtdc(tstart))
with(data3, table(death, pcm))


###################################################
### code chunk number 8: mgus4g
###################################################
getOption("SweaveHooks")[["fig"]]()
temp <- with(data3, ifelse(death==1, 2, pcm))
data3$event <- factor(temp, 0:2, labels=c("censor", "pcm", "death"))  
mfit3 <- survfit(Surv(tstart, tstop, event) ~ sex, data=data3, id=id)
print(mfit3, rmean=240, digits=2)
mfit3$transitions
plot(mfit3[,"pcm"], mark.time=FALSE, col=1:2, lty=1:2, lwd=2,
     xscale=12,
     xlab="Years post MGUS diagnosis", ylab="Fraction in the PCM state")
legend(40, .4, c("female", "male"), lty=1:2, col=1:2, lwd=2, bty='n') 


###################################################
### code chunk number 9: mgus5
###################################################
getOption("SweaveHooks")[["fig"]]()
# Death after PCM will correspond to data rows with
#  enum = 2 and event = death 
d2 <- with(data3, ifelse(enum==2 & event=='death', 4, as.numeric(event)))
e2 <- factor(d2, labels=c("censor", "pcm", "death w/o pcm", 
                          "death after pcm"))
mfit4 <- survfit(Surv(tstart, tstop, e2) ~ sex, data=data3, id=id)
plot(mfit2[2,], lty=c(1,2),
     xscale=12, mark.time=FALSE, lwd=2, 
     xlab="Years post diagnosis", ylab="Probability in State")
lines(mfit4[2,4], mark.time=FALSE, col=2, lty=1, lwd=2,
      conf.int=FALSE)

legend(200, .5, c("Death w/o PCM", "ever PCM", 
                  "Death after PCM"), col=c(1,1,2), lty=c(2,1,1), 
             lwd=2, bty='n', cex=.82)


###################################################
### code chunk number 10: cfit1
###################################################
options(show.signif.stars = FALSE)  # display intelligence
cfit1 <- coxph(Surv(etime, event) ~ age + sex + mspike, mgus2, id=id)
cfit1$cmap
print(cfit1, digits=2)  


###################################################
### code chunk number 11: mpyears
###################################################
pfit1 <- pyears(Surv(ptime, pstat) ~ sex, mgus2, scale=12)
round(100* pfit1$event/pfit1$pyears, 1)  # PCM rate per year

temp <- summary(mfit1, rmean="common")  #print the mean survival time
round(temp$table[,1:6], 1)


###################################################
### code chunk number 12: PCMcurve
###################################################
dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2)
dummy
csurv  <- survfit(cfit1, newdata=dummy)
dim(csurv)


###################################################
### code chunk number 13: PCMcurve2
###################################################
getOption("SweaveHooks")[["fig"]]()
plot(csurv[,'pcm'], xmax=25*12, xscale=12, 
     xlab="Years after MGUS diagnosis", ylab="PCM",
     col=1:2, lty=c(1,1,2,2), lwd=2)
legend(10, .14, outer(c("female", "male   "), 
                     c("diagnosis at age 60", "diagnosis at age 80"), 
                      paste, sep=", "),
       col=1:2, lty=c(1,1,2,2), bty='n', lwd=2)


###################################################
### code chunk number 14: year20
###################################################
# Print out a M/F results at 20 years
temp <- summary(csurv, time=20*12)$pstate
cbind(dummy, PCM= round(100*temp[,,2], 1))


###################################################
### code chunk number 15: fg1
###################################################
# (first three lines are identical to an earlier section)
etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
event <- with(mgus2, ifelse(pstat==0, 2*death, 1))
event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))

pcmdat <- finegray(Surv(etime, event) ~ ., data=mgus2,
                   etype="pcm")
pcmdat[1:4, c(1:3, 11:14)]

deathdat <- finegray(Surv(etime, event) ~ ., data=mgus2,
                     etype="death")
dim(pcmdat)
dim(deathdat)
dim(mgus2)


###################################################
### code chunk number 16: pfit2
###################################################
# The PCM curves of the multi-state model
pfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex,
                data=pcmdat, weight=fgwt)
# The death curves of the multi-state model
dfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, 
                  data=deathdat, weight=fgwt)


###################################################
### code chunk number 17: fg2
###################################################
getOption("SweaveHooks")[["fig"]]()
fgfit1 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat,
               weight= fgwt)
summary(fgfit1)
fgfit2 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat,
               weight= fgwt)
fgfit2

mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) #reprise the AJ
plot(mfit2[,'pcm'], col=1:2,
     lwd=2,  xscale=12,
     conf.times=c(5, 15, 25)*12,
     xlab="Years post diagnosis", ylab="Fraction with PCM")
ndata <- data.frame(sex=c("F", "M"))
fgsurv1 <- survfit(fgfit1, ndata)
lines(fgsurv1, fun="event", lty=2, lwd=2, col=1:2)
legend("topleft", c("Female, Aalen-Johansen", "Male, Aalen-Johansen",
                 "Female, Fine-Gray", "Male, Fine-Gray"),
       col=1:2, lty=c(1,1,2,2), bty='n')

# rate models with only sex
cfitr <- coxph(Surv(etime, event) ~ sex, mgus2, id=id)
rcurve <- survfit(cfitr, newdata=ndata)
#lines(rcurve[, 'pcm'], col=6:7)   # makes the plot too crowsded


###################################################
### code chunk number 18: fg3
###################################################
fgfit2a <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike,
                 data=pcmdat, weight=fgwt)

fgfit2b <-  coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike,
                 data=deathdat, weight=fgwt)
round(rbind(PCM= coef(fgfit2a), death=coef(fgfit2b)), 3)


###################################################
### code chunk number 19: finegray2
###################################################
getOption("SweaveHooks")[["fig"]]()
oldpar <- par(mfrow=c(1,2))
dummy <- expand.grid(sex= c("F", "M"), age=c(60, 80), mspike=1.2)
fsurv1 <- survfit(fgfit2a, dummy)  # time to progression curves
plot(fsurv1, xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, fun='event',
     xlab="Years", ylab="Fine-Gray predicted", 
     xmax=12*25, ylim=c(0, .15))
legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"),
       col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')

plot(csurv[,2], xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2,
     xlab="Years", ylab="Multi-state predicted", 
     xmax=12*25, ylim=c(0, .15))
legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"),
       col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')
par(oldpar)


###################################################
### code chunk number 20: finegray-check
###################################################
getOption("SweaveHooks")[["fig"]]()
zph.fgfit2a <- cox.zph(fgfit2a)
zph.fgfit2a
plot(zph.fgfit2a[1])
abline(h=coef(fgfit2a)[1], lty=2, col=2)


###################################################
### code chunk number 21: finegray3
###################################################
getOption("SweaveHooks")[["fig"]]()
fsurv2 <- survfit(fgfit2b, dummy)  # time to progression curves
xtime <- 0:(30*12)  #30 years
y1a <- 1 - summary(fsurv1, times=xtime)$surv  #predicted pcm
y1b <- 1 - summary(fsurv2, times=xtime)$surv #predicted deaths before pcm
y1  <- (y1a + y1b)  #either

matplot(xtime/12, y1, col=1:2, lty=c(1,1,2,2), type='l',
        xlab="Years post diagnosis", ylab="FG: either endpoint")
abline(h=1, col=3)
legend("bottomright", c("Female, 60", "Male, 60","Female: 80", "Male, 80"),
       col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n')


###################################################
### code chunk number 22: hgfit
###################################################
hgfit <- coxph(list(Surv(etime, event) ~ age + sex + mspike,
                    1:2 + 1:3 ~ hgb / common),
               data = mgus2, id = id)
hgfit


###################################################
### code chunk number 23: hgfit2
###################################################
hgfit$coef

hgfit$cmap


###################################################
### code chunk number 24: compete.Rnw:1026-1029 (eval = FALSE)
###################################################
## list(1: c("pcm", "death") ~ hgb / common,
##      1:0  ~ hgb / common,
##      state("(s0)"): (2:3) ~ hgb / common)


###################################################
### code chunk number 25: c3
###################################################
cox3a <- coxph(Surv(tstart, tstop, event) ~ age + sex, data3, id=id)
cox3b <- coxph(list(Surv(tstart, tstop, event) ~ age + sex,
                    1:3 + 2:3 ~ 1/ common),
               data= data3, id= id)
cox3b$cmap


###################################################
### code chunk number 26: pcmstack
###################################################
temp1 <- data.frame(mgus2, time=etime, status=(event=="pcm"), group='pcm')
temp2 <- data.frame(mgus2, time=etime, status=(event=="death"), group="death")
stacked <- rbind(temp1, temp2)
allfit <- coxph(Surv(time, status) ~ hgb + (age + sex+ mspike)*strata(group),
                 data=stacked)
all.equal(allfit$loglik, hgfit$loglik)

Try the survival package in your browser

Any scripts or data that you put into this service are public.

survival documentation built on Aug. 24, 2021, 5:06 p.m.