Nothing
set.seed(42)
simcount <- function(n = 5e2) {
x <- rnorm(n)
w <- 50 + rexp(n, rate = 1 / 5)
y <- rpois(n, exp(2 + 0.5 * x + log(w)) * rgamma(n, 1 / 2, 1 / 2))
return(data.frame(y, x, w))
}
dcount <- simcount()
test_learner_hal <- function() {
# verify that family argument is passed on + optional arguments can be
# passed on to hal9001::fit_hal in learner$estimate call
lr <- learner_hal(y ~ x + offset(log(w)), family = "poisson")
lr$estimate(dcount, lambda = c(1e4, 3.5))
expect_equal(lr$fit$lambda_star, 3.5) # lambda = 1e4 is a over-regularized
# model
# verify that offset is handled correctly and that predictions are generated
# on response scale
pr <- lr$predict(newdata = data.frame(x = 1, w = c(1, 5)))
expect_equal(pr[1] * 5, pr[2])
# optional arguments are passed on to underlying predict function
pr_link <- lr$predict(newdata = data.frame(x = 1, w = 1), type = "link")
expect_equivalent(pr[1], exp(pr_link))
}
test_learner_hal()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.