R/vc_score_h_perm.R

Defines functions vc_score_h_perm

Documented in vc_score_h_perm

#'Computes variance component test statistic for homogeneous trajectory
#'
#'This function computes an approximation of the variance component test for homogeneous trajectory
#'based on the asymptotic distribution of a mixture of \eqn{\chi^{2}}s using Davies method
#'from \code{\link[CompQuadForm]{davies}}
#'
#'@keywords internal
#'
#'@param y a numeric matrix of dim \code{g x n} containing the raw or normalized RNA-seq counts for g
#'genes from \code{n} samples.
#'
#'@param x a numeric design matrix of dim \code{n x p} containing the \code{p} covariates
#' to be adjusted for
#'
#'@param indiv a vector of length \code{n} containing the information for
#'attributing each sample to one of the studied individuals. Coerced
#'to be a \code{factor}.
#'
#'@param phi a numeric design matrix of size \code{n x K} containing the \code{K} longitudinal variables
#'to be tested (typically a vector of time points or functions of time)
#'
#'@param w a vector of length \code{n} containing the weights for the \code{n}
#'samples, corresponding to the inverse of the diagonal of the estimated covariance matrix of y.
#'
#'@param Sigma_xi a matrix of size \code{K x K} containing the covariance matrix
#'of the \code{K} random effects corresponding to \code{phi}.
#'
#'@param na_rm logical: should missing values (including \code{NA} and \code{NaN}) be omitted from the calculations? Default is \code{FALSE}.
#'
#'@param n_perm the number of permutation to perform. Default is \code{1000}.

#'@param progressbar logical indicating whether a progress bar should be displayed
#'when computing permutations (only in interactive mode).
#'
#'@param parallel_comp a logical flag indicating whether parallel computation
#'should be enabled. Only Linux and MacOS are supported, this is ignored on Windows.
#'Default is \code{TRUE}.
#'
#'@param nb_cores an integer indicating the number of cores to be used when
#'\code{parallel_comp} is \code{TRUE}.
#'Only Linux and MacOS are supported, this is ignored on Windows.
#'Default is \code{parallel::detectCores() - 1}.
#'
#'@return A list with the following elements:\itemize{
#'   \item \code{score}: an approximation of the observed set score
#'   \item \code{scores_perm}: a vector containing the permuted set scores
#'   \item \code{gene_scores_unscaled}: approximation of the individual gene scores
#'   \item \code{gene_scores_unscaled_perm}: a list of approximation of the permuted individual gene scores
#' }
#'
#'
#'
#'@examples
#'rm(list=ls())
#'set.seed(123)
#'
#'##generate some fake data
#'########################
#'ng <- 100
#'nindiv <- 30
#'nt <- 5
#'nsample <- nindiv*nt
#'tim <- matrix(rep(1:nt), nindiv, ncol=1, nrow=nsample)
#'tim <- cbind(tim, tim^2)
#'sigma <- 5
#'b0 <- 10
#'
#'#under the null:
#'beta1 <- rnorm(n=ng, 0, sd=0)
#'#under the (heterogen) alternative:
#'beta1 <- rnorm(n=ng, 0, sd=0.1)
#'#under the (homogen) alternative:
#'beta1 <- rnorm(n=ng, 0.06, sd=0)
#'
#'y.tilde <- b0 + rnorm(ng, sd = sigma)
#'y <- t(matrix(rep(y.tilde, nsample), ncol=ng, nrow=nsample, byrow=TRUE) +
#'       matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE)*matrix(rep(tim, ng),
#'                                                             ncol=ng, nrow=nsample, byrow=FALSE) +
#'       matrix(rnorm(ng*nsample, sd = sigma), ncol=ng, nrow=nsample, byrow=FALSE)
#'       )
#'myindiv <- rep(1:nindiv, each=nt)
#'x <- cbind(1, myindiv/2==floor(myindiv/2))
#'myw <- matrix(rnorm(nsample*ng, sd=0.1), ncol=nsample, nrow=ng)
#'
#'#run test
#'#We only use few permutations (10) to keep example running time low
#'#Otherwise one can use n_perm = 1000
#'score_homogen <- vc_score_h_perm(y, x, phi=tim, indiv=myindiv,
#'                                 w=myw, Sigma_xi=cov(tim), n_perm = 10,
#'                                 parallel_comp = FALSE)
#'score_homogen$score
#'
#'score_heterogen <- vc_score_perm(y, x, phi=tim, indiv=myindiv,
#'                            w=myw, Sigma_xi=cov(tim), n_perm = 10,
#'                            parallel_comp = FALSE)
#'score_heterogen$score
#'
#'scoreTest_homogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt),
#'                                  w=matrix(1, ncol=ncol(y), nrow=nrow(y)), Sigma_xi=cov(tim),
#'                                  homogen_traj = TRUE)
#'scoreTest_homogen$set_pval
#'scoreTest_heterogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt),
#'                                    w=matrix(1, ncol=ncol(y), nrow=nrow(y)), Sigma_xi=cov(tim),
#'                                    homogen_traj = FALSE)
#'scoreTest_heterogen$set_pval
#'
#'@seealso \code{\link[CompQuadForm]{davies}}
#'@importFrom CompQuadForm davies
#'@importFrom pbapply pbsapply
#'@importFrom parallel mclapply
#'
#'@export
vc_score_h_perm <- function(y, x, indiv, phi, w, Sigma_xi = diag(ncol(phi)),
                            na_rm = FALSE, n_perm = 1000, progressbar = TRUE,
                            parallel_comp = TRUE,
                            nb_cores = parallel::detectCores() - 1) {

  ## validity checks
  if(sum(!is.finite(w))>0){
    stop("At least 1 non-finite weight in 'w'")
  }

  ## dimensions check------

  stopifnot(is.matrix(y))
  stopifnot(is.matrix(x))
  stopifnot(is.matrix(phi))

  g <- nrow(y) # the number of genes measured
  n <- ncol(y) # the number of samples measured
  p <- ncol(x) # the number of covariates
  n_t <- ncol(phi) # the number of time bases
  stopifnot(nrow(x) == n)
  stopifnot(nrow(w) == g)
  stopifnot(ncol(w) == n)
  stopifnot(nrow(phi) == n)
  stopifnot(length(indiv) == n)


  # the number of random effects
  if (length(Sigma_xi) == 1) {
    K <- 1
    Sigma_xi <- matrix(Sigma_xi, K, K)
  } else {
    K <- nrow(Sigma_xi)
    stopifnot(ncol(Sigma_xi) == K)
  }
  stopifnot(n_t == K)


  ## data formating ------
  indiv <- factor(indiv, ordered=TRUE)
  nb_indiv <- length(levels(indiv))

  y_T <- t(y)

  # x_tilde_list <- y_tilde_list <- Phi_list <- list()
  # for (i in 1:nb_indiv) {
  #   select <- indiv==levels(indiv)[i]
  #   n_i <- length(which(select))
  #   x_i <- x[select,]
  #   y_i <- y_T[select,]
  #   phi_i <- phi[select,]
  #   Phi_list[[i]] <- do.call(rbind, replicate(g, phi_i, simplify = FALSE)) #TODO
  #   x_tilde_list[[i]] <- matrix(data=rep(x_i, each=g), ncol = p) #TODO
  #   y_tilde_list[[i]] <- matrix(y_i, ncol=1)
  # }
  # x_tilde <- do.call(rbind, x_tilde_list)
  # y_tilde <- do.call(rbind, y_tilde_list)
  # Phi <- do.call(rbind, Phi_list)
  #
  # alpha <- solve(t(x_tilde)%*%x_tilde)%*%t(x_tilde)%*%y_tilde
  # mu_new <- x_tilde %*% alpha
  # y_mu <- y_tilde - mu_new


  alpha <- solve(crossprod(x))%*%t(x)%*%rowMeans(y_T, na.rm=na_rm)
  yt_mu <- y_T - do.call(cbind,replicate(g, x%*%alpha, simplify = FALSE))


  ## test statistic computation ------
  sig_xi_sqrt <- (Sigma_xi*diag(K))%^% (-0.5) #sig_xi_sqrt <- (Sigma_xi %^% (-0.5))
  # xtx_inv <- solve(t(x_tilde) %*% x_tilde)
  # long_indiv <- rep(indiv, each = g)
  #
  # q <- matrix(NA, nrow=nb_indiv, ncol=K)
  # XT_i <- array(NA, c(nb_indiv, p, K))
  # U <- matrix(NA, nrow = nb_indiv, ncol = p)
  #
  # for (i in 1:nb_indiv){
  #   #for all the genes at once
  #   select <- indiv==levels(indiv)[i]
  #   long_select <- long_indiv==levels(indiv)[i]
  #   y_mu_i <-  as.vector(y_mu[long_select,])
  #   # y_tilde_i <- c(y_ij)
  #   x_tilde_i <- x_tilde[long_select,]
  #
  #   sigma_eps_inv_diag <- c(t(w)[select,])
  #   T_i <- sigma_eps_inv_diag*(Phi[long_select,] %*% sig_xi_sqrt)
  #   q[i,] <- c(y_mu_i %*% T_i)
  #   XT_i[i,,] <- t(x_tilde_i) %*% T_i
  #   U[i,] <- xtx_inv %*% t(x_tilde_i) %*% y_mu_i
  # }
  # XT <- colMeans(XT_i)
  # q_ext <- q - U %*% XT

  sig_eps_inv_T <- t(w)
  if(length(levels(indiv))>1){
    indiv_mat <- stats::model.matrix(~0 + factor(indiv))
  }else{
    indiv_mat <- matrix(as.numeric(indiv), ncol=1)
  }
  avg_xtx_inv_tx <- nb_indiv*tcrossprod(solve(crossprod(x, x)), x)

  compute_genewise_scores <- function(v, indiv_mat, avg_xtx_inv_tx){
    phi_perm <- phi[v, , drop=FALSE]
    phi_sig_xi_sqrt <- phi_perm%*%sig_xi_sqrt
    T_fast <- do.call(cbind, replicate(K, sig_eps_inv_T, simplify = FALSE))*matrix(apply(phi_sig_xi_sqrt, 2, rep, g), ncol = g*K)
    q_fast <- matrix(yt_mu, ncol=g*n_t, nrow=n)*T_fast
    if(na_rm & sum(is.na(q_fast))>0){
      q_fast[is.na(q_fast)] <- 0
    }
    q <- crossprod(indiv_mat, q_fast)
    XT_fast <- t(x)%*%T_fast/nb_indiv
    U_XT <- matrix(yt_mu, ncol=g*n_t, nrow=n)*crossprod(avg_xtx_inv_tx, XT_fast)
    if(na_rm & sum(is.na(U_XT))>0){
      U_XT[is.na(U_XT)] <- 0
    }
    U_XT_indiv <- crossprod(indiv_mat, U_XT)
    q_ext <-  q - U_XT_indiv
    qq <- colSums(q, na.rm = na_rm)^2/nb_indiv
    return(rowSums(matrix(qq, ncol=K)))# genewise scores
  }

  perm_list <- c(list(1:n), lapply(1:n_perm, function(x){as.numeric(unlist(lapply(split(x = as.character(1:n), f = indiv), FUN=sample)))}))
  if(!parallel_comp){
    if(progressbar){
      gene_Q <- pbapply::pbsapply(perm_list, compute_genewise_scores, indiv_mat = indiv_mat, avg_xtx_inv_tx = avg_xtx_inv_tx)
    }else{
      gene_Q <- sapply(perm_list, compute_genewise_scores, indiv_mat = indiv_mat, avg_xtx_inv_tx = avg_xtx_inv_tx)
    }
  }else{
    if(progressbar){
      gene_Q <- pbapply::pbsapply(perm_list, compute_genewise_scores, indiv_mat = indiv_mat, avg_xtx_inv_tx = avg_xtx_inv_tx,
                                  cl = nb_cores)
    }else{
      gene_Q <- simplify2array(parallel::mclapply(X = perm_list, FUN = compute_genewise_scores, indiv_mat = indiv_mat, avg_xtx_inv_tx = avg_xtx_inv_tx,
                                                  mc.cores = nb_cores))
    }
  }
  QQ <- colSums(gene_Q)

  return(list("score" = QQ[1], "scores_perm" = QQ[-1],
              "gene_scores_unscaled" = gene_Q[,1], "gene_scores_unscaled_perm" = gene_Q[,-1])
  )
}

Try the tcgsaseq package in your browser

Any scripts or data that you put into this service are public.

tcgsaseq documentation built on Sept. 13, 2020, 5:13 p.m.