Nothing
# Fit the Occupancy model of Royle and Nichols
occuRN <- function(formula, data, K = 25, starts, method = "BFGS",
se = TRUE, engine=c("C","R"), threads = 1, ...)
{
formulas <- split_formula(formula)
names(formulas) <- c("det", "state")
check_no_support(formulas)
if(!is(data, "unmarkedFrameOccu"))
stop("Data is not an unmarkedFrameOccu object.")
engine <- match.arg(engine, c("C", "R"))
dm <- getDesign(data, formulas)
y <- dm$y
y <- truncateToBinary(y)
J <- ncol(y)
M <- nrow(y)
occParms <- colnames(dm$X_state)
detParms <- colnames(dm$X_det)
nDP <- ncol(dm$X_det)
nOP <- ncol(dm$X_state)
nP <- nDP + nOP
if(!missing(starts) && length(starts) != nP)
stop(paste("The number of starting values should be", nP))
y.ji <- as.vector(y)
navec <- is.na(y.ji)
n <- 0:K
nll_R <- function(parms, f = "Poisson")
{
## compute individual level detection probabilities
r.ij <- matrix(plogis(dm$X_det %*% parms[(nOP + 1) : nP] + dm$offset_det), M, J,
byrow = TRUE)
## compute list of detection probabilities along N
p.ij.list <- lapply(n, function(k) 1 - (1 - r.ij)^k)
## compute P(y_{ij} | N) (cell probabilities) along N
cp.ij.list <- lapply(p.ij.list, function(pmat) pmat^y * (1-pmat)^(1-y))
## replace NA cell probabilities with 1.
cp.ij.list <- lapply(cp.ij.list, function(cpmat) {
cpmat[navec] <- 1
cpmat
})
## multiply across J to get P(y_i | N) along N
cp.in <- sapply(cp.ij.list, rowProds)
## compute P(N = n | lambda_i) along i
lambda.i <- exp(dm$X_state %*% parms[1 : nOP] + dm$offset_state)
lambda.in <- sapply(n, function(x) dpois(x, lambda.i))
## integrate over P(y_i | N = n) * P(N = n | lambda_i) wrt n
like.i <- rowSums(cp.in * lambda.in)
-sum(log(like.i))
}
if(engine=="R"){
nll <- nll_R
} else{
n_param <- c(nOP, nDP)
Kmin <- apply(y, 1, function(x) max(x, na.rm=TRUE))
nll <- function(params){
nll_occuRN(params, n_param, y, dm$X_state, dm$X_det, dm$offset_state, dm$offset_det,
K, Kmin, threads)
}
}
if(missing(starts)) starts <- rep(0, nP)
fm <- optim(starts, nll, method = method, hessian = se, ...)
covMat <- invertHessian(fm, nP, se)
ests <- fm$par
fmAIC <- 2 * fm$value + 2 * nP # + 2 * nP * (nP + 1) / (M - nP - 1)
names(ests) <- c(occParms, detParms)
stateEstimates <- unmarkedEstimate(name = "Abundance",
short.name = "lam",
estimates = ests[1:nOP],
covMat = as.matrix(covMat[1:nOP,1:nOP]), invlink = "exp",
invlinkGrad = "exp")
detEstimates <- unmarkedEstimate(name = "Detection", short.name = "p",
estimates = ests[(nOP + 1) : nP],
covMat = as.matrix(covMat[(nOP + 1) : nP, (nOP + 1) : nP]),
invlink = "logistic", invlinkGrad = "logistic.grad")
estimateList <- unmarkedEstimateList(list(state=stateEstimates,
det=detEstimates))
umfit <- new("unmarkedFitOccuRN", fitType = "occuRN",
call = match.call(), formula = formula, formlist = formulas, data = data,
sitesRemoved = dm$removed.sites, estimates = estimateList,
AIC = fmAIC, opt = fm, negLogLike = fm$value, nllFun = nll, K = K)
return(umfit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.