Nothing
### For the analysis of multiple response questions, use this function:
### https://stackoverflow.com/questions/9265003/analysis-of-multiple-response
#' Generate a table for multiple response questions
#'
#' The \code{multiResponse} function mimics the behavior of the table produced
#' by SPSS for multiple response questions.
#'
#'
#' @param data Dataframe containing the variables to display.
#' @param items,regex Arguments \code{items} and \code{regex} can be used to
#' specify which variables to process. \code{items} should contain the variable
#' (column) names (or indices), and \code{regex} should contain a regular
#' expression used to match to the column names of the dataframe. If none is
#' provided, all variables in the dataframe are processed.
#' @param endorsedOption Which value represents the endorsed option (note that
#' producing this kind of table requires dichotomous items, where each variable
#' is either endorsed or not endorsed, so this is also a way to treat other
#' variables as dichotomour).
#' @return A dataframe with columns \code{Option}, \code{Frequency},
#' \code{Percentage}, and \code{Percentage of (X) cases}, where X is the number
#' of cases.
#' @author Ananda Mahto; implemented in this package (and tweaked a bit) by
#' Gjalt-Jorn Peters.
#'
#' Maintainer: Gjalt-Jorn Peters <gjalt-jorn@@userfriendlyscience.com>
#' @references This function is based on the excellent and extensive Stack
#' Exchange answer by Ananda Mahto at
#' https://stackoverflow.com/questions/9265003/analysis-of-multiple-response.
#' @keywords utilities
#' @examples
#'
#' multiResponse(mtcars, c('vs', 'am'));
#'
#' @export multiResponse
multiResponse = function(data, items=NULL, regex = NULL, endorsedOption = 1) {
if (is.null(regex) && is.null(items)) {
items <- names(data);
} else if (is.null(items)) {
items <- grep(regex, names(data), value=TRUE)
}
if (!all(items %in% names(data))) {
stop("You specified items that do not exist in the data you provided (specifically, ",
vecTxtQ(items[!items %in% names(data)]), ").");
}
data = data[, items];
nrOfEndorsements = sum(data == endorsedOption, na.rm=TRUE);
endorsementsPerItem = colSums(data == endorsedOption, na.rm=TRUE);
### Number of participants; first look for missing values in each
### row, then only count participants with at least one valid
### value
nrOfCases = sum(!apply(apply(data, 1, is.na), 2, all));
totals = as.numeric(c(endorsementsPerItem, nrOfEndorsements));
res <- data.frame(c(names(endorsementsPerItem), "Total"),
totals,
(totals/nrOfEndorsements)*100,
(totals/nrOfCases)*100);
names(res) <- c("Option", "Frequency", "Percentage of responses", paste0("Percentage of (", nrOfCases, ") cases"));
return(res);
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.