### =========================================================================
### The transcripts(), exons(), cds(), promoters(), and terminators()
### extractors
### -------------------------------------------------------------------------
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### .extract_features()
###
### Return a named list of ordinary data frames, 1 per SELECT query.
.extract_features <- function(txdb, proxy_table, mcolumns=character(0),
filter=list(), core_columns)
{
schema_version <- TxDb_schema_version(txdb)
names(mcolumns) <- TXDB_column2table(mcolumns, from_table=proxy_table,
schema_version=schema_version)
proxy_column <- orderby <- core_columns[["id"]]
## 1st SELECT: extract stuff from the proxy table.
columns1 <- union(core_columns, mcolumns[names(mcolumns) == proxy_table])
df1 <- TxDb_SELECT_from_INNER_JOIN(txdb, proxy_table, columns1,
filter=filter, orderby=orderby)
## Additional SELECTs: 1 additional SELECT per satellite table with the
## exception that the satellite tables that belong to TXDB_SPLICING_BUNDLE
## are treated as the virtual single table obtained by LEFT JOIN'ing them
## together.
foreign_columns <- mcolumns[names(mcolumns) != proxy_table]
bundle_idx <- names(foreign_columns) %in% TXDB_SPLICING_BUNDLE
names(foreign_columns)[bundle_idx] <- "splicing"
foreign_columns <- split(foreign_columns, names(foreign_columns))
satellite_tables <- names(foreign_columns)
names(satellite_tables) <- satellite_tables
df_list <- lapply(satellite_tables, function(satellite_table) {
columns2 <- foreign_columns[[satellite_table]]
if (length(filter) == 0L) {
filter2 <- list()
} else {
filter2 <- setNames(list(df1[[proxy_column]]), proxy_column)
}
if (satellite_table == "splicing") {
columns2 <- c(proxy_column, columns2)
if (proxy_table == "transcript") {
orderby <- c(proxy_column, "exon_rank")
} else {
orderby <- c(proxy_column, "_tx_id")
}
TxDb_SELECT_from_splicing_bundle(txdb, columns2,
filter=filter2, orderby=orderby)
} else if (satellite_table == "gene") {
columns2 <- c(proxy_column, columns2)
orderby <- c("_tx_id", "gene_id")
TxDb_SELECT_from_INNER_JOIN(txdb, "gene", columns2,
filter=filter2, orderby=orderby)
} else {
stop(satellite_table, ": unsupported satellite table")
}
})
c(setNames(list(df1), proxy_table), df_list)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### .extract_features_as_GRanges()
###
.make_DataFrame_from_df_list <- function(df_list)
{
DF1 <- DataFrame(df_list[[1L]], check.names=FALSE)
if (length(df_list) == 1L)
return(DF1)
proxy_column <- names(DF1)[[1L]]
ids <- DF1[[proxy_column]]
DF_list <- lapply(2:length(df_list), function(i) {
df <- df_list[[i]]
stopifnot(identical(names(df)[[1L]], proxy_column))
f <- factor(df[[proxy_column]], levels=ids)
DataFrame(lapply(df[-1L], function(col) unname(splitAsList(col, f))),
check.names=FALSE)
})
do.call(DataFrame, c(list(DF1), DF_list, list(check.names=FALSE)))
}
.as_db_columns <- function(columns)
sub("^(tx_id|exon_id|cds_id)$", "_\\1", columns)
.extract_features_as_GRanges <- function(txdb, proxy_table,
mcolumns=character(0), filter=list(),
use.names=FALSE)
{
if (!isTRUEorFALSE(use.names))
stop("'use.names' must be TRUE or FALSE")
db_mcolumns <- db_mcolumns0 <- .as_db_columns(mcolumns)
proxy_columns <- TXDB_table_columns(proxy_table)
if (use.names) {
if ("name" %in% names(proxy_columns)) {
proxy_name_column <- proxy_columns[["name"]]
if (!(proxy_name_column %in% db_mcolumns0))
db_mcolumns <- c(db_mcolumns0, proxy_name_column)
} else {
warning(wmsg("no column in '", proxy_table, "' table ",
"to retrieve the feature names from"))
use.names <- FALSE
}
}
names(filter) <- .as_db_columns(names(filter))
core_columns <- proxy_columns[TXDB_CORE_COLTAGS]
df_list <- .extract_features(txdb, proxy_table, db_mcolumns,
filter, core_columns)
DF <- .make_DataFrame_from_df_list(df_list)
ans <- makeGRangesFromDataFrame(DF, seqinfo=get_TxDb_seqinfo0(txdb),
seqnames.field=core_columns[["chrom"]],
start.field=core_columns[["start"]],
end.field=core_columns[["end"]],
strand.field=core_columns[["strand"]])
if (use.names) {
ans_names <- DF[ , proxy_name_column]
ans_names[is.na(ans_names)] <- "" # replace NAs with empty strings
names(ans) <- ans_names
}
mcols(ans) <- setNames(DF[db_mcolumns0], mcolumns)
set_user_seqlevels_and_genome(ans, txdb)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Primary extractors: transcripts(), exons(), cds(), and genes().
###
.dbSchemaHasTxType <- function(txdb){
txFields <- dbListFields(dbconn(txdb),"transcript")
"tx_type" %in% txFields
}
## For converting user arguments FROM the UC style down to what we use
## internally
translateCols <- function(columns, txdb){
## preserve any names
oriColNames <- names(columns)
## and save the original column strings
oriCols <- columns
oriLen <- length(columns) ## not always the same as length(oriCols)
## get the available abbreviations as a translation vector (exp)
names <- .makeColAbbreviations(txdb)
if(("TXTYPE" %in% columns) && !.dbSchemaHasTxType(txdb)){
names <- c(names, c(tx_type='TXTYPE'))
}
exp <- sub("^_","", names(names))
names(exp) <- names
## Then replace only those IDs that match the UC names
m <- match(oriCols, names(exp))
idx = which(!is.na(m))
columns[idx] <- exp[m[idx]]
if(length(columns) == oriLen && is.null(oriColNames)){
names(columns) <- oriCols
}else if(length(columns) == oriLen && !is.null(oriColNames)){
names(columns) <- oriColNames
}else if(length(columns) != oriLen){
stop("names were lost in translateCols() helper")
}
columns
}
## me a named list from the metadata data.frame
.makeMetadataList <- function(meta){
lst <- as.list(meta[,2])
names(lst) <- meta[,1]
lst
}
## assign this to the metadata list in relevant object
.assignMetadataList <- function(obj, txdb){
metadata(obj)[[1]] <- .makeMetadataList(metadata(txdb))
names(metadata(obj))[[1]] <- "genomeInfo"
obj
}
.extractFromTxDb <- function(txdb, proxy_table,
mcolumns=character(0), filter=NULL,
use.names=FALSE)
{
user_mcolumns <- mcolumns
mcolumns <- translateCols(mcolumns, txdb)
if (is.null(filter))
filter <- list()
names(filter) <- translateCols(names(filter), txdb)
ans <- .extract_features_as_GRanges(txdb, proxy_table, mcolumns, filter,
use.names)
names(mcols(ans)) <- if (is.null(names(user_mcolumns))) user_mcolumns
else names(user_mcolumns)
.assignMetadataList(ans, txdb)
}
setGeneric("transcripts", function(x, ...) standardGeneric("transcripts"))
setMethod("transcripts", "TxDb",
function(x, columns=c("tx_id", "tx_name"), filter=NULL, use.names=FALSE)
.extractFromTxDb(x, "transcript", mcolumns=columns, filter=filter,
use.names=use.names)
)
setGeneric("exons", function(x, ...) standardGeneric("exons"))
setMethod("exons", "TxDb",
function(x, columns="exon_id", filter=NULL, use.names=FALSE)
.extractFromTxDb(x, "exon", mcolumns=columns, filter=filter,
use.names=use.names)
)
setGeneric("cds", function(x, ...) standardGeneric("cds"))
setMethod("cds", "TxDb",
function(x, columns="cds_id", filter=NULL, use.names=FALSE)
.extractFromTxDb(x, "cds", mcolumns=columns, filter=filter,
use.names=use.names)
)
setGeneric("genes", function(x, ...) standardGeneric("genes"))
.relist_col <- function(x, skeleton)
{
if (is.list(x) || (is(x, "List") && !is(x, "IntegerRanges")))
return(IRanges:::regroupBySupergroup(x, skeleton))
relist(x, skeleton)
}
### Used in SplicingGraphs! Move this to IRanges (and check similarity with
### "collapse" method for DataFrame objects).
.collapse_df <- function(df, skeleton)
{
## FIXME: endoapply() on a DataFrame object is broken when applying
## a function 'FUN' that modifies the nb of rows. Furthermore, the
## returned object passes validation despite being broken! Fix it
## in IRanges.
ans <- endoapply(df, function(x) unique(.relist_col(x, skeleton)))
## Fix the broken DataFrame returned by endoapply().
ans@nrows <- length(skeleton)
ans@rownames <- NULL
ans
}
### If 'single.strand.genes.only' is TRUE (the default), then genes are
### returned in a GRanges object and those genes that cannot be represented
### by a single genomic range (because they have exons located on both strands
### of the same reference sequence or on more than one reference sequence)
### are dropped with a message. Otherwise, they're returned in a GRangesList
### object with the metadata columns requested thru 'columns' set at the top
### level.
.TxDb.genes <- function(x, columns="gene_id", filter=NULL,
single.strand.genes.only=TRUE)
{
if (!is.character(columns))
stop("'columns' must be a character vector")
if (!isTRUEorFALSE(single.strand.genes.only))
stop("'single.strand.genes.only' must be TRUE or FALSE")
columns2 <- union(columns, "gene_id")
tx <- transcripts(x, columns=columns2, filter=filter)
## Unroll 'tx' along the 'gene_id' metadata column.
## Note that the number of genes per transcript will generally be 1 or 0.
## But we also want to handle the situation where it's > 1 which happens
## when the same transcript is linked to more than 1 gene (because this
## may happen one day and is the reason behind the choice to represent
## the 'gene_id' as a CharacterList object instead of a character vector).
gene_id <- mcols(tx)[ , "gene_id"]
ngene_per_tx <- elementNROWS(gene_id)
tx <- tx[rep.int(seq_along(ngene_per_tx), ngene_per_tx)]
mcols(tx)$gene_id <- unlist(gene_id, use.names=FALSE)
## Split 'tx' by gene.
tx_by_gene <- split(tx, mcols(tx)$gene_id)
## Turn inner mcols into outter mcols by relist()'ing them.
inner_mcols <- mcols(tx_by_gene@unlistData)[columns]
mcols(tx_by_gene@unlistData) <- NULL
outter_mcols <- .collapse_df(inner_mcols, tx_by_gene)
gene_id <- outter_mcols$gene_id
if (!is.null(gene_id)) {
stopifnot(identical(names(tx_by_gene), as.character(gene_id)))
outter_mcols$gene_id <- names(tx_by_gene)
}
mcols(tx_by_gene) <- outter_mcols
## Compute the gene ranges.
genes <- range(tx_by_gene)
if (!single.strand.genes.only)
return(genes)
is_single_range_gene <- elementNROWS(genes) == 1L
nb_multi_range_genes <- sum(!is_single_range_gene)
if (nb_multi_range_genes != 0L) {
if (nb_multi_range_genes == 1L) {
what <- "gene was dropped because it has"
} else {
what <- "genes were dropped because they have"
}
message(" ", wmsg(nb_multi_range_genes, " ", what, " exons located ",
"on both strands of the same reference sequence or on more ",
"than one reference sequence, so cannot be represented by a ",
"single genomic range."), "\n ",
wmsg("Use 'single.strand.genes.only=FALSE' to get all the ",
"genes in a GRangesList object, or use suppressMessages() ",
"to suppress this message."))
}
keep_idx <- which(is_single_range_gene)
genes <- genes[keep_idx]
ans <- unlist(genes, use.names=FALSE)
mcols(ans) <- mcols(genes)
names(ans) <- names(genes)
ans
}
setMethod("genes", "TxDb", .TxDb.genes)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### promoters() and terminators() methods
###
### Generics are in the IRanges package.
###
setMethod("promoters", "TxDb",
function(x, upstream=2000, downstream=200, use.names=TRUE, ...)
{
gr <- transcripts(x, ..., use.names=use.names)
promoters(gr, upstream=upstream, downstream=downstream)
}
)
setMethod("terminators", "TxDb",
function(x, upstream=2000, downstream=200, use.names=TRUE, ...)
{
gr <- transcripts(x, ..., use.names=use.names)
terminators(gr, upstream=upstream, downstream=downstream)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.