View source: R/Seurat_monocle_workflow.R
Seurat_workflow | R Documentation |
Create a Seurat object from score matrix, then, dimensionality reduction and classification of the score matrix.
Seurat_workflow(
score_matrix,
nfeatures = 2000,
dims_SNN = 1:5,
resolution = 0.1,
dims_UMAP = 1:5,
pca.reduction.name = "pca",
pca.reduction.key = "PC_",
umap.reduction.key = "UMAP_",
...
)
score_matrix |
Matrix. Score matrix of each site. |
nfeatures |
Number of features to select as top variable features. |
dims_SNN |
Dimensions of reduction to use as input with SNN. |
resolution |
Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. |
dims_UMAP |
Dimensions of reduction to use as input with UMAP. |
pca.reduction.name |
dimensional reduction name with PCA, Default:"pca". |
pca.reduction.key |
dimensional reduction key, specifies the string before the number for the dimension names with PCA. Default:"PC_". |
umap.reduction.key |
dimensional reduction key, specifies the string before the number for the dimension names with UMAP. Default:"UMAP_". |
... |
Other parameters of CreateSeuratObject, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters and RunUMAP functions in Seurat package. |
score matrix of each site. Rownames of the repeated sequence name will be suffixed.
CreateSeuratObject,FindVariableFeatures,ScaleData,
RunPCA,FindNeighbors,FindClusters,RunUMAP
require(ggseqlogo)
data(ggseqlogo_sample)
test_aa <- get_alignment_score(alignment = seqs_aa[[1]],type = "AA")
my_Seurat <- Seurat_workflow(test_aa)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.