Seurat_workflow: Create a Seurat object from score matrix, then,...

View source: R/Seurat_monocle_workflow.R

Seurat_workflowR Documentation

Create a Seurat object from score matrix, then, dimensionality reduction and classification of the score matrix.

Description

Create a Seurat object from score matrix, then, dimensionality reduction and classification of the score matrix.

Usage

Seurat_workflow(
  score_matrix,
  nfeatures = 2000,
  dims_SNN = 1:5,
  resolution = 0.1,
  dims_UMAP = 1:5,
  pca.reduction.name = "pca",
  pca.reduction.key = "PC_",
  umap.reduction.key = "UMAP_",
  ...
)

Arguments

score_matrix

Matrix. Score matrix of each site.

nfeatures

Number of features to select as top variable features.

dims_SNN

Dimensions of reduction to use as input with SNN.

resolution

Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.

dims_UMAP

Dimensions of reduction to use as input with UMAP.

pca.reduction.name

dimensional reduction name with PCA, Default:"pca".

pca.reduction.key

dimensional reduction key, specifies the string before the number for the dimension names with PCA. Default:"PC_".

umap.reduction.key

dimensional reduction key, specifies the string before the number for the dimension names with UMAP. Default:"UMAP_".

...

Other parameters of CreateSeuratObject, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters and RunUMAP functions in Seurat package.

Value

score matrix of each site. Rownames of the repeated sequence name will be suffixed.

See Also

CreateSeuratObject,FindVariableFeatures,ScaleData, RunPCA,FindNeighbors,FindClusters,RunUMAP

Examples

require(ggseqlogo)
data(ggseqlogo_sample)
test_aa <- get_alignment_score(alignment = seqs_aa[[1]],type = "AA")
my_Seurat <- Seurat_workflow(test_aa)

Busydog1990/genepro documentation built on July 20, 2023, 6:03 a.m.