## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE---------------------------------------------------------------
# ?MHCIatlas::NameOfFunction
## ----eval=FALSE---------------------------------------------------------------
# ?MHCIatlas::MakeCorrMouse
## ----eval=FALSE---------------------------------------------------------------
# devtools::install_github('CaronLab/MHCIatlas')
## ----eval=FALSE---------------------------------------------------------------
# requiredpackages<-c('BiocManager', 'FactoMineR', 'factoextra',
# 'stringr', 'ggplot2', 'cowplot', 'tidyr', 'stats','broom', 'ggrepel',
# 'ggpmisc','dplyr', 'magrittr', 'data.table', 'Matrix', 'pheatmap',
# 'reshape2', 'ggplotify', 'RColorBrewer', 'forcats',
# 'rtracklayer', 'TxDb.Mmusculus.UCSC.mm10.knownGene',
# 'TxDb.Hsapiens.UCSC.hg38.knownGene', 'AnnotationDbi',
# 'org.Mm.eg.db','GenomicFeatures', 'zoo', 'limma',
# 'webr', 'org.Hs.eg.db', 'data.table', 'scales','ggforce')
# for (pkg in requiredpackages) {
# if (pkg %in% rownames(installed.packages()) == FALSE)
# {install.packages(pkg)
# tryCatch({BiocManager::install(pkg)},error=function(e){pkg})}
# }
## ----eval=FALSE---------------------------------------------------------------
# devtools::install_github('CaronLab/MHCIatlas')
## ----eval=FALSE---------------------------------------------------------------
# library(MHCIatlas)
## ----eval=FALSE---------------------------------------------------------------
# df_human<- GetHumanMHCIdata(NetMHC_Rank_Threshold = 2,return_all_rawData = FALSE,
# omitThymus = TRUE)
# df_mouse<- GetMouseMHCIdata(NetMHC_Rank_Threshold = 2,return_all_rawData = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# F2<-mkFigure2(df_human)
## ----eval=FALSE---------------------------------------------------------------
# print(F2[[2]])
## ----eval=F-------------------------------------------------------------------
# F3<-mkFigure3(df_human, df_mouse)
## ----eval=FALSE---------------------------------------------------------------
# print(F3)
## ----eval=F-------------------------------------------------------------------
# BasicAnalHuman(df_human,df_mouse)
# BasicAnalMouse(df_mouse)
## ----eval=F-------------------------------------------------------------------
# mkMouseConnectivityMap(df_mouse)
## ----eval=F-------------------------------------------------------------------
# F4<-mkFigure4(df_mouse)
## ----eval=FALSE---------------------------------------------------------------
# print(F4)
## ----eval=F-------------------------------------------------------------------
# HumanHousekeepers<- HousekeepersHuman(df_human)
# F5<-mkFigure5(
# df_human,
# HumanHousekeepers,
# df_mouse,
# useDefaultCons = TRUE,
# ConsMouse = NA,
# ConsHuman = NA
# )
## ----eval=FALSE---------------------------------------------------------------
# print(F5)
## ----eval=F-------------------------------------------------------------------
# ConsHuman<- ConservationHuman(
# df_human,
# HumanHousekeepers,
# pathBW_human = "~/Downloads/hg38.phastCons100way.bw",
# samplesize = 2000,
# quantile = 4,
# ts_DonorSpecific = FALSE,
# MinTissuesPerDonor = 15,
# returnplots = TRUE
# )
# ConsMouse<- ConservationMouse(
# df_mouse,
# pathBW_mouse = "~/Downloads/mm10.60way.phastCons.bw",
# samplesize = 2000,
# returnplots = TRUE
# )
## ----eval=F-------------------------------------------------------------------
# HumanHousekeepers<- HousekeepersHuman(df_human)
# F5<-mkFigure5(
# df_human,
# HumanHousekeepers,
# df_mouse,
# useDefaultCons = FALSE,
# ConsMouse = ConsMouse,
# ConsHuman = ConsHuman
# )
## ----eval=FALSE---------------------------------------------------------------
# print(F5)
## ----eval=FALSE---------------------------------------------------------------
# corr_human<- MakeCorrHuman(df_human,Donors = c('all'),
# deconvolute_byHLAGene = FLASE,pValue_Threshold = 0.05,
# rsq_Threshold = 0.4,runAnalCorrHuman = TRUE)
# corr_mouse<- MakeCorrMouse(df_mouse,pValue_Threshold = 0.01,rsq_Threshold = 0.4,useSILAC = F)
## ----eval=FALSE---------------------------------------------------------------
# F6<-mkFigure6(corr_human,corr_mouse,GO_human = NA,GO_mouse = NA)
## ----echo=FALSE---------------------------------------------------------------
head(read.csv(system.file("extdata", "mouse_GOterms.csv", package = "MHCIatlas"))[c("Gene.Set.Name","FDR.qvalue")])
## ----eval=FALSE---------------------------------------------------------------
# HumanHousekeepers<- HousekeepersHuman(df_human)
# F6<-mkFigure6(corr_human,corr_mouse,GO_human = NA,GO_mouse = NA)
## ----eval=FALSE---------------------------------------------------------------
# print(F6)
## ----eval=FALSE---------------------------------------------------------------
# plots_human <- PlotsHumanProtCorr(
# corr_human,
# SigGene_names = NULL,
# allSigprots = TRUE,
# RankSigThreshold = 2,
# path_filename = NA,
# return_list_of_plots = TRUE
# )
#
# plots_mouse <- PlotsMouseProtCorr(
# corr_mouse,
# pValue_Threshold = 0.01,
# SigGene_names = NULL,
# path_filename = NA,
# return_list_of_plots = TRUE
# )
## ----eval=FALSE---------------------------------------------------------------
# plots_mouse[['Erap1']]
## ----eval=FALSE---------------------------------------------------------------
# names(plots_mouse)
## ----eval=FALSE---------------------------------------------------------------
# plots_mouse[['CD84']]
# names(plots_human)
## ----eval=FALSE---------------------------------------------------------------
# mkHumanConnectivityMap(df_human)[[2]] #Supplementary Figure 1
# SupplFigure2(df_human)
# SupplFigure3(df_mouse)
# SupplFigure4(df_human)
# SupplFigure5(df_human)
# SupplFigure6(df_mouse,df_human)
# HousekeepersHuman(df_human) #Supplementary Figure 7
# SupplFigure10(corr_human, corr_mouse, plots_human, plots_mouse)
## ----eval=FALSE---------------------------------------------------------------
# read.csv(system.file("extdata", "mouse_GOterms.csv", package = "MHCIatlas"))
## ----eval=FALSE---------------------------------------------------------------
# read.csv(system.file("extdata", "human_GOterms.csv", package = "MHCIatlas"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.