R/pytorch_estimator.R

# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/estimator.py

#' @include pytorch_defaults.R
#' @include pytorch_model.R
#' @include r_utils.R

#' @import R6
#' @import sagemaker.core
#' @import sagemaker.common
#' @import sagemaker.mlcore
#' @import lgr

#' @title PyTorch Class
#' @description Handle end-to-end training and deployment of custom PyTorch code.
#' @export
PyTorch = R6Class("PyTorch",
  inherit = sagemaker.mlcore::Framework,
  public = list(

    #' @field .module
    #' mimic python module
    .module = "sagemaker.pytorch.estimator",

    #' @description This ``Estimator`` executes an PyTorch script in a managed PyTorch
    #'              execution environment, within a SageMaker Training Job. The managed
    #'              PyTorch environment is an Amazon-built Docker container that executes
    #'              functions defined in the supplied ``entry_point`` Python script.
    #'              Training is started by calling
    #'              :meth:`~sagemaker.amazon.estimator.Framework.fit` on this Estimator.
    #'              After training is complete, calling
    #'              :meth:`~sagemaker.amazon.estimator.Framework.deploy` creates a hosted
    #'              SageMaker endpoint and returns an
    #'              :class:`~sagemaker.amazon.pytorch.model.PyTorchPredictor` instance that
    #'              can be used to perform inference against the hosted model.
    #'              Technical documentation on preparing PyTorch scripts for SageMaker
    #'              training and using the PyTorch Estimator is available on the project
    #'              home-page: https://github.com/aws/sagemaker-python-sdk
    #' @param entry_point (str): Path (absolute or relative) to the Python source
    #'              file which should be executed as the entry point to training.
    #'              If ``source_dir`` is specified, then ``entry_point``
    #'              must point to a file located at the root of ``source_dir``.
    #' @param framework_version (str): PyTorch version you want to use for
    #'              executing your model training code. Defaults to ``None``. Required unless
    #'              ``image_uri`` is provided. List of supported versions:
    #'              https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators.
    #' @param py_version (str): Python version you want to use for executing your
    #'              model training code. One of 'py2' or 'py3'. Defaults to ``None``. Required
    #'              unless ``image_uri`` is provided.
    #' @param source_dir (str): Path (absolute, relative or an S3 URI) to a directory
    #'              with any other training source code dependencies aside from the entry
    #'              point file (default: None). If ``source_dir`` is an S3 URI, it must
    #'              point to a tar.gz file. Structure within this directory are preserved
    #'              when training on Amazon SageMaker.
    #' @param hyperparameters (dict): Hyperparameters that will be used for
    #'              training (default: None). The hyperparameters are made
    #'              accessible as a dict[str, str] to the training code on
    #'              SageMaker. For convenience, this accepts other types for keys
    #'              and values, but ``str()`` will be called to convert them before
    #'              training.
    #' @param image_uri (str): If specified, the estimator will use this image
    #'              for training and hosting, instead of selecting the appropriate
    #'              SageMaker official image based on framework_version and
    #'              py_version. It can be an ECR url or dockerhub image and tag.
    #'              Examples:
    #'              * ``123412341234.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0``
    #'              * ``custom-image:latest``
    #'              If ``framework_version`` or ``py_version`` are ``None``, then
    #'              ``image_uri`` is required. If also ``None``, then a ``ValueError``
    #'              will be raised.
    #' @param distribution (list): A dictionary with information on how to run distributed training
    #'              (default: None).  Currently, the following are supported:
    #'              distributed training with parameter servers, SageMaker Distributed (SMD) Data
    #'              and Model Parallelism, and MPI. SMD Model Parallelism can only be used with MPI.
    #'              To enable parameter server use the following setup:
    #' @param ... : Additional kwargs passed to the :class:`~sagemaker.estimator.Framework`
    #'              constructor.
    initialize = function(entry_point,
                          framework_version=NULL,
                          py_version=NULL,
                          source_dir=NULL,
                          hyperparameters=NULL,
                          image_uri=NULL,
                          distribution = NULL,
                          ...){
      kwargs = list(...)

      validate_version_or_image_args(framework_version, py_version, image_uri)

      self$framework_version = framework_version
      self$py_version = py_version

      if (!is.null(distribution)){
        instance_type = renamed_kwargs(
          "train_instance_type", "instance_type", kwargs[["instance_type"]], kwargs
        )
        validate_smdistributed(
          instance_type=instance_type,
          framework_name="pytorch",
          framework_version=framework_version,
          py_version=py_version,
          distribution=distribution,
          image_uri=image_uri
        )

        warn_if_parameter_server_with_multi_gpu(
          training_instance_type=instance_type, distribution=distribution
        )
      }


      if (islistempty(kwargs$enable_sagemaker_metrics)){
        # enable sagemaker metrics for PT v1.3 or greater:
        if (!is.null(self$framework_version) &&
            (package_version(self$framework_version) >= package_version("1.3")))
          kwargs$enable_sagemaker_metrics = TRUE
      }

      kwargs = c(entry_point = entry_point,
                 source_dir = source_dir,
                 hyperparameters = list(hyperparameters),
                 image_uri = image_uri,
                 kwargs)

      do.call(super$initialize, kwargs)

      attr(self, "_framework_name") = "pytorch"

      if (identical(py_version, "py2"))
        LOGGER$warn(
          python_deprecation_warning(attr(self, "_framework_name"), PYTORCH_LATEST_PY2_VERSION)
        )
    },

    #' @description Return hyperparameters used by your custom PyTorch code during model training.
    hyperparameters = function(){
      hyperparameters = super$hyperparameters()
      additional_hyperparameters = private$.distribution_configuration(
        distribution=self$distribution
      )
      hyperparameters = modifyList(hyperparameters, private$.json_encode_hyperparameters(additional_hyperparameters))
      return(hyperparameters)
    },

    #' @description Create a SageMaker ``PyTorchModel`` object that can be deployed to an
    #'              ``Endpoint``.
    #' @param model_server_workers (int): Optional. The number of worker processes
    #'              used by the inference server. If None, server will use one
    #'              worker per vCPU.
    #' @param role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``,
    #'              which is also used during transform jobs. If not specified, the
    #'              role from the Estimator will be used.
    #' @param vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
    #'              the model. Default: use subnets and security groups from this Estimator.
    #'              * 'Subnets' (list[str]): List of subnet ids.
    #'              * 'SecurityGroupIds' (list[str]): List of security group ids.
    #' @param entry_point (str): Path (absolute or relative) to the local Python source file which
    #'              should be executed as the entry point to training. If ``source_dir`` is specified,
    #'              then ``entry_point`` must point to a file located at the root of ``source_dir``.
    #'              If not specified, the training entry point is used.
    #' @param source_dir (str): Path (absolute or relative) to a directory with any other serving
    #'              source code dependencies aside from the entry point file.
    #'              If not specified, the model source directory from training is used.
    #' @param dependencies (list[str]): A list of paths to directories (absolute or relative) with
    #'              any additional libraries that will be exported to the container.
    #'              If not specified, the dependencies from training are used.
    #'              This is not supported with "local code" in Local Mode.
    #' @param ... : Additional kwargs passed to the :class:`~sagemaker.pytorch.model.PyTorchModel`
    #'              constructor.
    #' @return sagemaker.pytorch.model.PyTorchModel: A SageMaker ``PyTorchModel``
    #'              object. See :func:`~sagemaker.pytorch.model.PyTorchModel` for full details.
    create_model = function(model_server_workers=NULL,
                            role=NULL,
                            vpc_config_override="VPC_CONFIG_DEFAULT",
                            entry_point=NULL,
                            source_dir=NULL,
                            dependencies=NULL,
                            ...){
      kwargs = list(...)
      if (!("image_uri" %in% names(kwargs)))
        kwargs$image_uri = self$image_uri
      kwargs$name = private$.get_or_create_name(kwargs$name)

      kwargs = append(
        list(
          model_data=self$model_data,
          role=(role %||% self$role),
          entry_point=(entry_point %||% private$.model_entry_point()),
          framework_version=self$framework_version,
          py_version=self$py_version,
          source_dir=(source_dir %||% private$.model_source_dir()),
          container_log_level=self$container_log_level,
          code_location=self$code_location,
          model_server_workers=model_server_workers,
          sagemaker_session=self$sagemaker_session,
          vpc_config=self$get_vpc_config(vpc_config_override),
          dependencies=(dependencies %||% self$dependencies)
          ),
        kwargs
      )
      return (do.call(PyTorchModel$new, kwargs))
    }
  ),
  private = list(

    # Convert the job description to init params that can be handled by the
    # class constructor
    # Args:
    #   job_details: the returned job details from a describe_training_job
    # API call.
    # model_channel_name (str): Name of the channel where pre-trained
    # model data will be downloaded.
    # Returns:
    #   dictionary: The transformed init_params
    .prepare_init_params_from_job_description = function(job_details,
                                                         model_channel_name=NULL){
      init_params = super$.prepare_init_params_from_job_description(
        job_details, model_channel_name)

      image_uri = init_params$image_uri
      init_params$image_uri = NULL
      img_split = framework_name_from_image(image_uri)
      names(img_split) = c("framework", "py_version", "tag", "scriptmode")

      if (is.null(img_split$tag)) {
        framework_version = NULL
      } else {
        framework_version = framework_version_from_tag(img_split$tag)}
      init_params$framework_version = framework_version
      init_params$py_version = img_split$py_version

      if (is.null(img_split$framework)){
        # If we were unable to parse the framework name from the image it is not one of our
        # officially supported images, in this case just add the image to the init params.
        init_params$image_uri = image_uri
        return(init_params)
      }

      if (img_split$framework != attr(self, "_framework_name"))
        stop(sprintf(
          "Training job: %s didn't use image for requested framework",
          job_details$TrainingJobName),
          call. = F)

      return(init_params)
    }
  ),
  lock_object = F
)
DyfanJones/sagemaker-r-mlframework documentation built on March 18, 2022, 7:41 a.m.