# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/pytorch/estimator.py
#' @include pytorch_defaults.R
#' @include pytorch_model.R
#' @include r_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.common
#' @import sagemaker.mlcore
#' @import lgr
#' @title PyTorch Class
#' @description Handle end-to-end training and deployment of custom PyTorch code.
#' @export
PyTorch = R6Class("PyTorch",
inherit = sagemaker.mlcore::Framework,
public = list(
#' @field .module
#' mimic python module
.module = "sagemaker.pytorch.estimator",
#' @description This ``Estimator`` executes an PyTorch script in a managed PyTorch
#' execution environment, within a SageMaker Training Job. The managed
#' PyTorch environment is an Amazon-built Docker container that executes
#' functions defined in the supplied ``entry_point`` Python script.
#' Training is started by calling
#' :meth:`~sagemaker.amazon.estimator.Framework.fit` on this Estimator.
#' After training is complete, calling
#' :meth:`~sagemaker.amazon.estimator.Framework.deploy` creates a hosted
#' SageMaker endpoint and returns an
#' :class:`~sagemaker.amazon.pytorch.model.PyTorchPredictor` instance that
#' can be used to perform inference against the hosted model.
#' Technical documentation on preparing PyTorch scripts for SageMaker
#' training and using the PyTorch Estimator is available on the project
#' home-page: https://github.com/aws/sagemaker-python-sdk
#' @param entry_point (str): Path (absolute or relative) to the Python source
#' file which should be executed as the entry point to training.
#' If ``source_dir`` is specified, then ``entry_point``
#' must point to a file located at the root of ``source_dir``.
#' @param framework_version (str): PyTorch version you want to use for
#' executing your model training code. Defaults to ``None``. Required unless
#' ``image_uri`` is provided. List of supported versions:
#' https://github.com/aws/sagemaker-python-sdk#pytorch-sagemaker-estimators.
#' @param py_version (str): Python version you want to use for executing your
#' model training code. One of 'py2' or 'py3'. Defaults to ``None``. Required
#' unless ``image_uri`` is provided.
#' @param source_dir (str): Path (absolute, relative or an S3 URI) to a directory
#' with any other training source code dependencies aside from the entry
#' point file (default: None). If ``source_dir`` is an S3 URI, it must
#' point to a tar.gz file. Structure within this directory are preserved
#' when training on Amazon SageMaker.
#' @param hyperparameters (dict): Hyperparameters that will be used for
#' training (default: None). The hyperparameters are made
#' accessible as a dict[str, str] to the training code on
#' SageMaker. For convenience, this accepts other types for keys
#' and values, but ``str()`` will be called to convert them before
#' training.
#' @param image_uri (str): If specified, the estimator will use this image
#' for training and hosting, instead of selecting the appropriate
#' SageMaker official image based on framework_version and
#' py_version. It can be an ECR url or dockerhub image and tag.
#' Examples:
#' * ``123412341234.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0``
#' * ``custom-image:latest``
#' If ``framework_version`` or ``py_version`` are ``None``, then
#' ``image_uri`` is required. If also ``None``, then a ``ValueError``
#' will be raised.
#' @param distribution (list): A dictionary with information on how to run distributed training
#' (default: None). Currently, the following are supported:
#' distributed training with parameter servers, SageMaker Distributed (SMD) Data
#' and Model Parallelism, and MPI. SMD Model Parallelism can only be used with MPI.
#' To enable parameter server use the following setup:
#' @param ... : Additional kwargs passed to the :class:`~sagemaker.estimator.Framework`
#' constructor.
initialize = function(entry_point,
framework_version=NULL,
py_version=NULL,
source_dir=NULL,
hyperparameters=NULL,
image_uri=NULL,
distribution = NULL,
...){
kwargs = list(...)
validate_version_or_image_args(framework_version, py_version, image_uri)
self$framework_version = framework_version
self$py_version = py_version
if (!is.null(distribution)){
instance_type = renamed_kwargs(
"train_instance_type", "instance_type", kwargs[["instance_type"]], kwargs
)
validate_smdistributed(
instance_type=instance_type,
framework_name="pytorch",
framework_version=framework_version,
py_version=py_version,
distribution=distribution,
image_uri=image_uri
)
warn_if_parameter_server_with_multi_gpu(
training_instance_type=instance_type, distribution=distribution
)
}
if (islistempty(kwargs$enable_sagemaker_metrics)){
# enable sagemaker metrics for PT v1.3 or greater:
if (!is.null(self$framework_version) &&
(package_version(self$framework_version) >= package_version("1.3")))
kwargs$enable_sagemaker_metrics = TRUE
}
kwargs = c(entry_point = entry_point,
source_dir = source_dir,
hyperparameters = list(hyperparameters),
image_uri = image_uri,
kwargs)
do.call(super$initialize, kwargs)
attr(self, "_framework_name") = "pytorch"
if (identical(py_version, "py2"))
LOGGER$warn(
python_deprecation_warning(attr(self, "_framework_name"), PYTORCH_LATEST_PY2_VERSION)
)
},
#' @description Return hyperparameters used by your custom PyTorch code during model training.
hyperparameters = function(){
hyperparameters = super$hyperparameters()
additional_hyperparameters = private$.distribution_configuration(
distribution=self$distribution
)
hyperparameters = modifyList(hyperparameters, private$.json_encode_hyperparameters(additional_hyperparameters))
return(hyperparameters)
},
#' @description Create a SageMaker ``PyTorchModel`` object that can be deployed to an
#' ``Endpoint``.
#' @param model_server_workers (int): Optional. The number of worker processes
#' used by the inference server. If None, server will use one
#' worker per vCPU.
#' @param role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``,
#' which is also used during transform jobs. If not specified, the
#' role from the Estimator will be used.
#' @param vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
#' the model. Default: use subnets and security groups from this Estimator.
#' * 'Subnets' (list[str]): List of subnet ids.
#' * 'SecurityGroupIds' (list[str]): List of security group ids.
#' @param entry_point (str): Path (absolute or relative) to the local Python source file which
#' should be executed as the entry point to training. If ``source_dir`` is specified,
#' then ``entry_point`` must point to a file located at the root of ``source_dir``.
#' If not specified, the training entry point is used.
#' @param source_dir (str): Path (absolute or relative) to a directory with any other serving
#' source code dependencies aside from the entry point file.
#' If not specified, the model source directory from training is used.
#' @param dependencies (list[str]): A list of paths to directories (absolute or relative) with
#' any additional libraries that will be exported to the container.
#' If not specified, the dependencies from training are used.
#' This is not supported with "local code" in Local Mode.
#' @param ... : Additional kwargs passed to the :class:`~sagemaker.pytorch.model.PyTorchModel`
#' constructor.
#' @return sagemaker.pytorch.model.PyTorchModel: A SageMaker ``PyTorchModel``
#' object. See :func:`~sagemaker.pytorch.model.PyTorchModel` for full details.
create_model = function(model_server_workers=NULL,
role=NULL,
vpc_config_override="VPC_CONFIG_DEFAULT",
entry_point=NULL,
source_dir=NULL,
dependencies=NULL,
...){
kwargs = list(...)
if (!("image_uri" %in% names(kwargs)))
kwargs$image_uri = self$image_uri
kwargs$name = private$.get_or_create_name(kwargs$name)
kwargs = append(
list(
model_data=self$model_data,
role=(role %||% self$role),
entry_point=(entry_point %||% private$.model_entry_point()),
framework_version=self$framework_version,
py_version=self$py_version,
source_dir=(source_dir %||% private$.model_source_dir()),
container_log_level=self$container_log_level,
code_location=self$code_location,
model_server_workers=model_server_workers,
sagemaker_session=self$sagemaker_session,
vpc_config=self$get_vpc_config(vpc_config_override),
dependencies=(dependencies %||% self$dependencies)
),
kwargs
)
return (do.call(PyTorchModel$new, kwargs))
}
),
private = list(
# Convert the job description to init params that can be handled by the
# class constructor
# Args:
# job_details: the returned job details from a describe_training_job
# API call.
# model_channel_name (str): Name of the channel where pre-trained
# model data will be downloaded.
# Returns:
# dictionary: The transformed init_params
.prepare_init_params_from_job_description = function(job_details,
model_channel_name=NULL){
init_params = super$.prepare_init_params_from_job_description(
job_details, model_channel_name)
image_uri = init_params$image_uri
init_params$image_uri = NULL
img_split = framework_name_from_image(image_uri)
names(img_split) = c("framework", "py_version", "tag", "scriptmode")
if (is.null(img_split$tag)) {
framework_version = NULL
} else {
framework_version = framework_version_from_tag(img_split$tag)}
init_params$framework_version = framework_version
init_params$py_version = img_split$py_version
if (is.null(img_split$framework)){
# If we were unable to parse the framework name from the image it is not one of our
# officially supported images, in this case just add the image to the init params.
init_params$image_uri = image_uri
return(init_params)
}
if (img_split$framework != attr(self, "_framework_name"))
stop(sprintf(
"Training job: %s didn't use image for requested framework",
job_details$TrainingJobName),
call. = F)
return(init_params)
}
),
lock_object = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.