# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_sklearn.py
context("SKLearn")
library(sagemaker.core)
library(sagemaker.common)
library(sagemaker.mlcore)
DATA_DIR = file.path(getwd(), "data")
SCRIPT_PATH =file.path(DATA_DIR, "dummy_script.py")
TAR_FILE <- file.path(DATA_DIR, "test_tar.tgz")
BIN_OBJ <- readBin(con = TAR_FILE, what = "raw", n = file.size(TAR_FILE))
SERVING_SCRIPT_FILE = "another_dummy_script.py"
MODEL_DATA = "s3://some/data.tar.gz"
ENV = list("DUMMY_ENV_VAR"= "dummy_value")
TIMESTAMP = "2017-11-06-14:14:15.672"
TIME = 1507167947
BUCKET_NAME = "mybucket"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.c4.4xlarge"
GPU_INSTANCE_TYPE = "ml.p2.xlarge"
IMAGE_URI = "sagemaker-scikit-learn"
JOB_NAME = sprintf("%s", IMAGE_URI)
IMAGE_URI_FORMAT_STRING = "246618743249.dkr.ecr.%s.amazonaws.com/%s:%s-%s-%s"
ROLE = "Dummy"
REGION = "us-west-2"
GPU = "ml.p2.xlarge"
CPU = "ml.c4.xlarge"
sklearn_version = "0.23-1"
PYTHON_VERSION = "py3"
ENDPOINT_DESC = list("EndpointConfigName"="test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
LIST_TAGS_RESULT = list("Tags"= list(list("Key"= "TagtestKey", "Value"= "TagtestValue")))
EXPERIMENT_CONFIG = list(
"ExperimentName"= "exp",
"TrialName"= "trial",
"TrialComponentDisplayName"= "tc"
)
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
s3_client$.call_args("get_object", list(Body = BIN_OBJ))
sagemaker_client <- Mock$new()
describe = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/m.tar.gz"))
describe_compilation = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://m/model_c5.tar.gz"))
sagemaker_client$.call_args("describe_training_job", describe)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("list_tags", LIST_TAGS_RESULT)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-sklearn-dummy"))
sms$.call_args("create_model", "sagemaker-sklearn")
sms$.call_args("endpoint_from_production_variants", "sagemaker-sklearn-endpoint")
sms$.call_args("logs_for_job")
sms$.call_args("wait_for_job")
sms$.call_args("wait_for_compilation_job", describe_compilation)
sms$.call_args("compile_model")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
.get_full_cpu_image_uri <- function(version){
return(sprintf(IMAGE_URI_FORMAT_STRING,REGION, IMAGE_URI, version, "cpu", PYTHON_VERSION))
}
.create_train_job <- function(version, py_version){
return(list(
"input_config"= list(
list(
"DataSource"= list(
"S3DataSource"= list(
"S3DataType"= "S3Prefix",
"S3Uri" = NULL,
"S3DataDistributionType"= "FullyReplicated")
),
"ChannelName"= "training")
),
"role"= ROLE,
"output_config"= list("S3OutputPath"= sprintf("s3://%s/",BUCKET_NAME)),
"resource_config"= list(
"InstanceCount"= 1,
"InstanceType"= "ml.c4.4xlarge",
"VolumeSizeInGB"= 30),
"stop_condition"= list("MaxRuntimeInSeconds"= 24 * 60 * 60),
"vpc_config"= NULL,
"input_mode"= "File",
"job_name"= sprintf("^%s[0-9-]+", JOB_NAME),
"hyperparameters"= list(
"sagemaker_submit_directory"= sprintf(
"s3://%s/%s[0-9-]+/source/sourcedir.tar.gz", BUCKET_NAME, JOB_NAME),
"sagemaker_program"= "dummy_script.py",
"sagemaker_container_log_level"= 20,
"sagemaker_job_name"= sprintf("^%s[0-9-]+", JOB_NAME),
"sagemaker_region"= 'us-west-2'),
"experiment_config"= NULL,
"image_uri"= .get_full_cpu_image_uri(version),
"debugger_hook_config"= list(
"S3OutputPath"= sprintf("s3://%s/",BUCKET_NAME),
"CollectionConfigurations"= list()),
"profiler_rule_configs"=list(list(
"RuleConfigurationName"="ProfilerReport-[0-9]+",
"RuleEvaluatorImage"="895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-debugger-rules:latest",
"RuleParameters"=list("rule_to_invoke"="ProfilerReport"))
),
"profiler_config"=list(
"S3OutputPath"=sprintf("s3://%s/",BUCKET_NAME))
)
)
}
test_that("test training image uri", {
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
framework_version=sklearn_version,
container_log_level=container_log_level,
py_version=PYTHON_VERSION,
base_job_name="job",
source_dir=source_dir
)
expect_equal(sklearn$training_image_uri(), .get_full_cpu_image_uri(sklearn_version))
})
test_that("test create model", {
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
sklearn_model = SKLearnModel$new(
model_data=source_dir,
role=ROLE,
sagemaker_session=sms,
entry_point=SCRIPT_PATH,
framework_version=sklearn_version
)
image_uri = .get_full_cpu_image_uri(sklearn_version)
model_values = sklearn_model$prepare_container_def(CPU)
expect_equal(model_values$Image, image_uri)
})
test_that("test create model with network isolation", {
source_dir = "s3://mybucket/source"
repacked_model_data = "s3://mybucket/prefix/model.tar.gz"
sms <- sagemaker_session()
sklearn_model = SKLearnModel$new(
model_data=source_dir,
role=ROLE,
sagemaker_session=sms,
entry_point=SCRIPT_PATH,
enable_network_isolation=TRUE,
framework_version=sklearn_version
)
sklearn_model$uploaded_code = list(s3_prefix=repacked_model_data, script_name="script")
model_values = sklearn_model$prepare_container_def(CPU)
expect_equal(model_values$Environment$SAGEMAKER_SUBMIT_DIRECTORY, "/opt/ml/model/code")
})
test_that("test create model from estimator", {
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
base_job_name = "job"
sms <- sagemaker_session()
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
framework_version=sklearn_version,
container_log_level=container_log_level,
py_version=PYTHON_VERSION,
base_job_name=base_job_name,
source_dir=source_dir,
enable_network_isolation=TRUE
)
sklearn$fit(inputs="s3://mybucket/train", job_name="new_name")
model = sklearn$create_model()
expect_equal(model$sagemaker_session, sms)
expect_equal(model$framework_version, sklearn_version)
expect_equal(model$py_version, sklearn$py_version)
expect_equal(model$entry_point, basename(SCRIPT_PATH))
expect_equal(model$role, ROLE)
expect_equal(model$container_log_level, "20")
expect_equal(model$source_dir, source_dir)
expect_null(model$vpc_config)
expect_true(model$enable_network_isolation())
})
test_that("test create model with optional params", {
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
sms <- sagemaker_session()
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
container_log_level=container_log_level,
framework_version=sklearn_version,
py_version=PYTHON_VERSION,
base_job_name="job",
source_dir=source_dir
)
sklearn$fit(inputs="s3://mybucket/train", job_name="new_name")
custom_image = "ubuntu:latest"
new_role = "role"
model_server_workers = 2
vpc_config = list("Subnets"= list("foo"), "SecurityGroupIds"= list("bar"))
new_source_dir = "s3://myotherbucket/source"
dependencies = list("/directory/a", "/directory/b")
model_name = "model-name"
model = sklearn$create_model(
image_uri=custom_image,
role=new_role,
model_server_workers=model_server_workers,
vpc_config_override=vpc_config,
entry_point=SERVING_SCRIPT_FILE,
source_dir=new_source_dir,
dependencies=dependencies,
name=model_name
)
expect_equal(model$image_uri, custom_image)
expect_equal(model$role, new_role)
expect_equal(model$model_server_workers, model_server_workers)
expect_equal(model$vpc_config, vpc_config)
expect_equal(model$entry_point, SERVING_SCRIPT_FILE)
expect_equal(model$source_dir, new_source_dir)
expect_equal(model$dependencies, dependencies)
expect_equal(model$name, model_name)
})
test_that("test create model with custom image", {
container_log_level = 'INFO'
source_dir = "s3://mybucket/source"
custom_image = "ubuntu:latest"
sms <- sagemaker_session()
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
image_uri=custom_image,
container_log_level=container_log_level,
py_version=PYTHON_VERSION,
base_job_name="job",
source_dir=source_dir
)
sklearn$fit(inputs="s3://mybucket/train", job_name="new_name")
model = sklearn$create_model()
expect_equal(model$image_uri, custom_image)
})
test_that("test sklearn", {
skip_if_no_python()
skip_if_no_numpy()
sms <- sagemaker_session()
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
py_version=PYTHON_VERSION,
framework_version=sklearn_version
)
inputs = "s3://mybucket/train"
sklearn$fit(inputs=inputs, experiment_config=EXPERIMENT_CONFIG)
expected_train_args = .create_train_job(sklearn_version)
expected_train_args$input_config[[1]]$DataSource$S3DataSource$S3Uri = inputs
expected_train_args$experiment_config = EXPERIMENT_CONFIG
actual_train_args = sms$train(..return_value = T)
# check if keys are identical
expect_equal(names(actual_train_args), names(expected_train_args))
# check if hyperparameters are created correctly
expected_hyperparameters = expected_train_args$hyperparameters
actual_hyperparameters = actual_train_args$hyperparameters
expected_train_args$hyperparameters = NULL
actual_train_args$hyperparameters = NULL
for (i in names(expected_hyperparameters)){
expect_true(grepl(expected_hyperparameters[[i]], actual_hyperparameters[[i]]))
}
# check if rule configuration name is created correctly
expected_RuleConfigurationName = expected_train_args$profiler_rule_configs[[1]]$RuleConfigurationName
actual_RuleConfigurationName= actual_train_args$profiler_rule_configs[[1]]$RuleConfigurationName
expected_train_args$profiler_rule_configs[[1]]$RuleConfigurationName = NULL
actual_train_args$profiler_rule_configs[[1]]$RuleConfigurationName = NULL
expect_true(grepl(expected_RuleConfigurationName, actual_RuleConfigurationName))
expect_true(grepl(expected_train_args$job_name, actual_train_args$job_name))
expected_train_args$job_name=NULL
actual_train_args$job_name=NULL
# check if list of parameters is created correctly
expect_equal(expected_train_args,actual_train_args)
model = sklearn$create_model()
expected_image_base = "246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-scikit-learn:%s-cpu-%s"
ll = model$prepare_container_def(CPU)
expected_ll = list(
"Image"= sprintf(expected_image_base,sklearn_version, PYTHON_VERSION),
"Environment"= list(
"SAGEMAKER_PROGRAM"= "dummy_script.py",
"SAGEMAKER_SUBMIT_DIRECTORY"= "s3://mybucket/sagemaker-scikit-learn[0-9-]+/source/sourcedir.tar.gz",
"SAGEMAKER_CONTAINER_LOG_LEVEL"= "20",
"SAGEMAKER_REGION"= "us-west-2"),
"ModelDataUrl"= "s3://m/m.tar.gz")
expect_equal(ll[-2], expected_ll[-2])
for (i in seq_along(ll$Environment)){
if(names(ll$Environment[i]) == "SAGEMAKER_SUBMIT_DIRECTORY")
expect_true(grepl(expected_ll$Environment[[i]], ll$Environment[[i]]))
else expect_equal(ll$Environment[i], expected_ll$Environment[i])
}
predictor = sklearn$deploy(1, CPU)
expect_true(inherits(predictor, "SKLearnPredictor"))
})
test_that("test transform multiple values for entry point issue", {
sms <- sagemaker_session()
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=INSTANCE_TYPE,
py_version=PYTHON_VERSION,
framework_version=sklearn_version)
inputs = "s3://mybucket/train"
sklearn$fit(inputs=inputs)
transformer = sklearn$transformer(instance_count=1, instance_type="ml.m4.xlarge")
# if we got here, we didn't get a "multiple values" error
expect_false(is.null(transformer))
expect_true(inherits(transformer, "Transformer"))
})
test_that("test fail distributed training", {
sms <- sagemaker_session()
expect_error(
SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=2,
instance_type=INSTANCE_TYPE,
py_version=PYTHON_VERSION,
framework_version=sklearn_version)
)
})
test_that("test fail gpu training", {
sms <- sagemaker_session()
expect_error(
SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_type=GPU_INSTANCE_TYPE,
py_version=PYTHON_VERSION,
framework_version=sklearn_version)
)
})
test_that("test model", {
skip_if_no_python()
skip_if_no_numpy()
sms <- sagemaker_session()
model = SKLearnModel$new(
"s3://some/data.tar.gz",
role=ROLE,
entry_point=SCRIPT_PATH,
framework_version=sklearn_version,
sagemaker_session=sms)
predictor = model$deploy(1, CPU)
expect_true(inherits(predictor, "SKLearnPredictor"))
})
test_that("test attach", {
training_image = sprintf("1.dkr.ecr.us-west-2.amazonaws.com/sagemaker-scikit-learn:%s-cpu-%s",
sklearn_version, PYTHON_VERSION)
returned_job_description = list(
"AlgorithmSpecification"= list("TrainingInputMode"= "File", "TrainingImage"= training_image),
"HyperParameters"= list(
"sagemaker_submit_directory"= 's3://some/sourcedir.tar.gz',
"sagemaker_program"= 'iris-dnn-classifier.py',
"sagemaker_s3_uri_training"= 'sagemaker-3/integ-test-data/tf_iris',
"sagemaker_container_log_level"= 'INFO',
"sagemaker_job_name"= 'neo',
"training_steps"= "100",
"sagemaker_region"= 'us-west-2'),
"RoleArn"= "arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"= list(
"VolumeSizeInGB"= 30,
"InstanceCount"= 1,
"InstanceType"= "ml.c4.xlarge"),
"StoppingCondition"= list("MaxRuntimeInSeconds"= 24 * 60 * 60),
"TrainingJobName"= "neo",
"TrainingJobStatus"= "Completed",
"TrainingJobArn"= "arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"= list("KmsKeyId"= "", "S3OutputPath"= "s3://place/output/neo"),
"TrainingJobOutput"= list("S3TrainingJobOutput"= "s3://here/output.tar.gz")
)
sms <- sagemaker_session()
sms$sagemaker$.call_args("describe_training_job", returned_job_description)
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sms,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
framework_version=sklearn_version,
py_version=PYTHON_VERSION)
estimator = sklearn$attach(training_job_name="describe_training_job", sagemaker_session=sms)
expect_equal(estimator$.current_job_name, "neo")
expect_equal(estimator$latest_training_job, "neo")
expect_equal(estimator$py_version, PYTHON_VERSION)
expect_equal(estimator$framework_version, sklearn_version)
expect_equal(estimator$role, "arn:aws:iam::366:role/SageMakerRole")
expect_equal(estimator$instance_count, 1)
expect_equal(estimator$max_run, 24 * 60 * 60)
expect_equal(estimator$input_mode, "File")
expect_equal(estimator$base_job_name, "neo")
expect_equal(estimator$output_path, "s3://place/output/neo")
expect_equal(estimator$output_kms_key, "")
expect_equal(estimator$hyperparameters()$training_steps, "100")
expect_equal(estimator$source_dir, "s3://some/sourcedir.tar.gz")
expect_equal(estimator$entry_point, "iris-dnn-classifier.py")
})
test_that("test attach wrong framework", {
rjd = list(
"AlgorithmSpecification"= list(
"TrainingInputMode"= "File",
"TrainingImage"= "1.dkr.ecr.us-west-2.amazonaws.com/sagemaker-mxnet-py3-cpu:1.0.4"),
"HyperParameters"= list(
"sagemaker_submit_directory"= 's3://some/sourcedir.tar.gz',
"checkpoint_path"= 's3://other/1508872349',
"sagemaker_program"= 'iris-dnn-classifier.py',
"sagemaker_container_log_level"= 'INFO',
"training_steps"= "100",
"sagemaker_region"= 'us-west-2'),
"RoleArn"= "arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"= list(
"VolumeSizeInGB"= 30,
"InstanceCount"= 1,
"InstanceType"= "ml.c4.xlarge"),
"StoppingCondition"= list("MaxRuntimeInSeconds"= 24 * 60 * 60),
"TrainingJobName"= "neo",
"TrainingJobStatus"= "Completed",
"TrainingJobArn"= "arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"= list("KmsKeyId"= "", "S3OutputPath"= "s3://place/output/neo"),
"TrainingJobOutput"= list("S3TrainingJobOutput"= "s3://here/output.tar.gz")
)
sm <- sagemaker_session()
sm$sagemaker$.call_args("describe_training_job", rjd)
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sm,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
framework_version=sklearn_version,
py_version=PYTHON_VERSION)
expect_error(sklearn$attach(training_job_name="neo", sagemaker_session=sm))
})
test_that("test attach custom image", {
training_image = "1.dkr.ecr.us-west-2.amazonaws.com/my_custom_sklearn_image:latest"
returned_job_description = list(
"AlgorithmSpecification"= list("TrainingInputMode"= "File", "TrainingImage"= training_image),
"HyperParameters"= list(
"sagemaker_submit_directory"= 's3://some/sourcedir.tar.gz',
"sagemaker_program"= 'iris-dnn-classifier.py',
"sagemaker_s3_uri_training"= 'sagemaker-3/integ-test-data/tf_iris',
"sagemaker_container_log_level"= 'INFO',
"sagemaker_job_name"= 'neo',
"training_steps"= "100",
"sagemaker_region"= 'us-west-2'),
"RoleArn"= "arn:aws:iam::366:role/SageMakerRole",
"ResourceConfig"= list(
"VolumeSizeInGB"= 30,
"InstanceCount"= 1,
"InstanceType"= "ml.c4.xlarge"),
"StoppingCondition"= list("MaxRuntimeInSeconds"= 24 * 60 * 60),
"TrainingJobName"= "neo",
"TrainingJobStatus"= "Completed",
"TrainingJobArn"= "arn:aws:sagemaker:us-west-2:336:training-job/neo",
"OutputDataConfig"= list("KmsKeyId"= "", "S3OutputPath"= "s3://place/output/neo"),
"TrainingJobOutput"= list("S3TrainingJobOutput"= "s3://here/output.tar.gz")
)
sm <- sagemaker_session()
sm$sagemaker$.call_args("describe_training_job", returned_job_description)
sklearn = SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sm,
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
framework_version=sklearn_version,
py_version=PYTHON_VERSION)
estimator = sklearn$attach(training_job_name="neo", sagemaker_session=sm)
expect_equal(estimator$latest_training_job, "neo")
expect_equal(estimator$image_uri, training_image)
expect_equal(estimator$training_image_uri(), training_image)
})
test_that("test estimator py2 warning", {
expect_error(
SKLearn$new(
entry_point=SCRIPT_PATH,
role=ROLE,
sagemaker_session=sagemaker_session(),
instance_count=INSTANCE_COUNT,
instance_type=INSTANCE_TYPE,
framework_version=sklearn_version,
py_version="py2")
)
})
test_that("test model py2 warning", {
expect_error(
SKLearnModel$new(
model_data=source_dir,
role=ROLE,
entry_point=SCRIPT_PATH,
sagemaker_session=sagemaker_session(),
framework_version=sklearn_version,
py_version="py2")
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.