analysis_DESeq: DESEQ2 analysis pipeline

View source: R/DESeq2_functions.R

analysis_DESeqR Documentation

DESEQ2 analysis pipeline

Description

When running DESeq2 you usually add multiple terms to the matrix design. Test the effect of them

Usage

analysis_DESeq(
  OUTPUT_Data_dir_given,
  count_table,
  sample_sheet_given,
  list_of_cols,
  formula_given,
  int_threads = 2,
  sign_value.given = 0.05,
  LFC.given = log2(1.2),
  coef_n = NA,
  early_return = FALSE,
  comp_ID = NULL,
  cutoff.given = 0.9,
  localFit = FALSE,
  forceResults = FALSE,
  min_cutoff_to_plot = 3,
  max_cutoff_to_plot = 50,
  gene.annot = NULL,
  data_type = "mRNA",
  shrinkage.given = "apeglm"
)

Arguments

OUTPUT_Data_dir_given

Absolute path to store results

count_table

Dataframe/matrix of counts

sample_sheet_given

Samplesheet containing metadata information

formula_given

Design formula to use

int_threads

Number of threads to use

sign_value.given

Adjusted pvalue cutoff. Default=0.05,

LFC.given

Log Fold change cutoff. Default=log2(1.2),

coef_n

Number of the coefficient of results to test (if desired)

early_return

Whether to return exploratory results early or not

comp_ID

Tag name to include for each comparison

cutoff.given

add an option to include cutoff when removing Zeros

localFit

Use a fitType=local for mean dispersion fit in DESeq2

forceResults

Boolean to force re-run analysis if already generated in the folder provided

min_cutoff_to_plot

Minimun number of genes significant to continue analysis. Default=3

max_cutoff_to_plot

Number of genes significant to plot as candidates analysis. Default=50

gene.annot

Dataframe containing gene annotation (Default: NULL)

shrinkage.given

LFC shrinkage estimator provided. Available: apeglm, ashr or normal


HCGB-IGTP/HCGB.IGTP.DAnalysis documentation built on April 13, 2025, 12:03 a.m.