View source: R/DESeq2_functions.R
analysis_DESeq | R Documentation |
When running DESeq2 you usually add multiple terms to the matrix design. Test the effect of them
analysis_DESeq(
OUTPUT_Data_dir_given,
count_table,
sample_sheet_given,
list_of_cols,
formula_given,
int_threads = 2,
sign_value.given = 0.05,
LFC.given = log2(1.2),
coef_n = NA,
early_return = FALSE,
comp_ID = NULL,
cutoff.given = 0.9,
localFit = FALSE,
forceResults = FALSE,
min_cutoff_to_plot = 3,
max_cutoff_to_plot = 50,
gene.annot = NULL,
data_type = "mRNA",
shrinkage.given = "apeglm"
)
OUTPUT_Data_dir_given |
Absolute path to store results |
count_table |
Dataframe/matrix of counts |
sample_sheet_given |
Samplesheet containing metadata information |
formula_given |
Design formula to use |
int_threads |
Number of threads to use |
sign_value.given |
Adjusted pvalue cutoff. Default=0.05, |
LFC.given |
Log Fold change cutoff. Default=log2(1.2), |
coef_n |
Number of the coefficient of results to test (if desired) |
early_return |
Whether to return exploratory results early or not |
comp_ID |
Tag name to include for each comparison |
cutoff.given |
add an option to include cutoff when removing Zeros |
localFit |
Use a fitType=local for mean dispersion fit in DESeq2 |
forceResults |
Boolean to force re-run analysis if already generated in the folder provided |
min_cutoff_to_plot |
Minimun number of genes significant to continue analysis. Default=3 |
max_cutoff_to_plot |
Number of genes significant to plot as candidates analysis. Default=50 |
gene.annot |
Dataframe containing gene annotation (Default: NULL) |
shrinkage.given |
LFC shrinkage estimator provided. Available: apeglm, ashr or normal |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.