#' Anomaly Detection Using Seasonal Hybrid ESD Test
#'
#' A technique for detecting anomalies in seasonal univariate time series where the input is a
#' series of <timestamp, count> pairs.
#'
#' @md
#' @name AnomalyDetectionTs
#' @param x Time series as a two column data frame where the first column consists of the
#' timestamps and the second column consists of the observations.
#' @param max_anoms Maximum number of anomalies that S-H-ESD will detect as a percentage of the
#' data.
#' @param direction Directionality of the anomalies to be detected. One of:
#' `pos`, `neg`, `both`.
#' @param alpha The level of statistical significance with which to accept or reject anomalies.
#' @param only_last Find and report anomalies only within the last day or hr in the time seriess.
#' One of `NULL`, `day`, `hr`.
#' @param threshold Only report positive going anoms above the threshold specified. One of:
#' `None`, `med_max`, `p95`, `p99`.
#' @param e_value Add an additional column to the anoms output containing the expected value.
#' @param longterm Increase anom detection efficacy for time series that are greater than a month.
#' See `Details`` below.
#' @param piecewise_median_period_weeks The piecewise median time window as described in Vallis,
#' Hochenbaum, and Kejariwal (2014). Defaults to 2.
#' @param verbose Enable debug messages
#' @param na.rm Remove any NAs in timestamps.(default: `FALSE`)
#' @return The returned value is a data frame containing timestamps, values,
#' and optionally expected values.
#' @references
#' - Vallis, O., Hochenbaum, J. and Kejariwal, A., (2014)
#' "A Novel Technique for Long-Term Anomaly Detection in the Cloud", 6th USENIX, Philadelphia, PA.
#' (<https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf>)
#' - Rosner, B., (May 1983), "Percentage Points for a Generalized ESD Many-Outlier
#' Procedure", Technometrics, 25(2), pp. 165-172. (<https://www.jstor.org/stable/1268549>)
#' @examples
#' data(raw_data)
#'
#' ad_ts(raw_data, max_anoms=0.02, direction='both')
#'
#' # To detect only the anomalies on the last day, run the following:
#'
#' ad_ts(raw_data, max_anoms=0.02, direction='both', only_last="day")
#' @seealso [ad_vec()]
#' @export
AnomalyDetectionTs <- function(x, max_anoms = 0.10, direction = "pos",
alpha = 0.05, only_last = NULL, threshold = "None",
e_value = FALSE, longterm = FALSE,
piecewise_median_period_weeks = 2,
verbose = FALSE, na.rm = FALSE) {
# Check for supported inputs types
if (!is.data.frame(x)) {
stop("data must be a single data frame.")
} else {
if (ncol(x) != 2 || !is.numeric(x[[2]])) {
stop(paste0("data must be a 2 column data.frame, with the first column being ",
"a set of timestamps, and the second coloumn being numeric values.",
collapse = ""))
}
# Format timestamps if necessary
if (!(class(x[[1]])[1] == "POSIXlt")) x <- format_timestamp(x)
}
# Rename data frame columns if necessary
if (any((names(x) == c("timestamp", "count")) == FALSE)) {
colnames(x) <- c("timestamp", "count")
}
if (!is.logical(na.rm)) stop("na.rm must be either TRUE or FALSE")
# Deal with NAs in timestamps
if (any(is.na(x$timestamp))) {
if (na.rm) {
x <- x[-which(is.na(x$timestamp)), ]
} else {
stop("timestamp contains NAs, please set na.rm to TRUE or remove the NAs manually.")
}
}
# Sanity check all input parameters
if (max_anoms > .49) {
stop(paste("max_anoms must be less than 50% of the data points (max_anoms =",
round(max_anoms * length(x[[2]]), 0), " data_points =", length(x[[2]]), ")."))
} else if (max_anoms < 0) {
stop("max_anoms must be positive.")
} else if (max_anoms == 0) {
warning("0 max_anoms results in max_outliers being 0.")
}
if (!direction %in% c("pos", "neg", "both")) {
stop("direction options are: pos | neg | both.")
}
if (!(0.01 <= alpha || alpha <= 0.1)) {
if (verbose) message("Warning: alpha is the statistical signifigance, and is usually between 0.01 and 0.1")
}
if (!is.null(only_last) && !only_last %in% c("day", "hr")) {
stop("only_last must be either 'day' or 'hr'")
}
if (!threshold %in% c("None", "med_max", "p95", "p99")) {
stop("threshold options are: None | med_max | p95 | p99.")
}
if (!is.logical(e_value)) {
stop("e_value must be either TRUE or FALSE")
}
if (!is.logical(longterm)) {
stop("longterm must be either TRUE or FALSE")
}
if (piecewise_median_period_weeks < 2) {
stop("piecewise_median_period_weeks must be at greater than 2 weeks")
}
# -- Main analysis: Perform S-H-ESD
# Derive number of observations in a single day.
# Although we derive this in S-H-ESD, we also need it to be minutley later on so we do it here first.
gran <- get_gran(x, 1)
if (gran == "day") {
num_days_per_line <- 7
if (is.character(only_last) && only_last == "hr") {
only_last <- "day"
}
} else {
num_days_per_line <- 1
}
# Aggregate data to minutely if secondly
if (gran == "sec" || gran == "ms") { # ref: https://github.com/twitter/AnomalyDetection/pull/69/files
x <- format_timestamp(
stats::aggregate(
x[2],
format(x[1], "%Y-%m-%d %H:%M:00"),
sum)
) # ref: https://github.com/twitter/AnomalyDetection/pull/44
gran <- "min" # ref: https://github.com/twitter/AnomalyDetection/pull/98/files?diff=unified
}
period <- switch(
gran,
sec = 3600, # ref: https://github.com/twitter/AnomalyDetection/pull/93/files
ms = 1000, # ref: https://github.com/twitter/AnomalyDetection/pull/69/files
min = 1440,
hr = 24,
# if the data is daily, then we need to bump the period to weekly to get multiple examples
day = 7
)
num_obs <- length(x[[2]])
if (max_anoms < 1 / num_obs) max_anoms <- 1 / num_obs
# -- Setup for longterm time series
# If longterm is enabled, break the data into subset data frames and store in all_data
if (longterm) {
# Pre-allocate list with size equal to the number of piecewise_median_period_weeks chunks in x + any left over chunk
# handle edge cases for daily and single column data period lengths
if (gran == "day") {
# STL needs 2*period + 1 observations
num_obs_in_period <- period * piecewise_median_period_weeks + 1
num_days_in_period <- (7 * piecewise_median_period_weeks) + 1
} else {
num_obs_in_period <- period * 7 * piecewise_median_period_weeks
num_days_in_period <- (7 * piecewise_median_period_weeks)
}
# Store last date in time series
last_date <- x[[1]][num_obs]
all_data <- vector(mode = "list", length = ceiling(length(x[[1]]) / (num_obs_in_period)))
# Subset x into piecewise_median_period_weeks chunks
for (j in seq(1, length(x[[1]]), by = num_obs_in_period)) {
start_date <- x[[1]][j]
end_date <- min(start_date + lubridate::days(num_days_in_period), x[[1]][length(x[[1]])])
# if there is at least 14 days left, subset it, otherwise subset last_date - 14days
if (difftime(end_date, start_date, units = "days") == as.difftime(num_days_in_period, units = "days")) {
all_data[[ceiling(j / (num_obs_in_period))]] <- x[x[[1]] >= start_date & x[[1]] < end_date, ]
} else {
all_data[[ceiling(j / (num_obs_in_period))]] <-
x[x[[1]] > (last_date - lubridate::days(num_days_in_period)) & x[[1]] <= last_date, ]
}
}
} else {
# If longterm is not enabled, then just overwrite all_data list with x as the only item
all_data <- list(x)
}
# Create empty data frames to store all anoms and seasonal+trend component from decomposition
all_anoms <- data.frame(timestamp = numeric(0), count = numeric(0))
seasonal_plus_trend <- data.frame(timestamp = numeric(0), count = numeric(0))
# Detect anomalies on all data (either entire data in one-pass, or in 2 week blocks if longterm=TRUE)
for (i in 1:length(all_data)) {
anomaly_direction <- switch(
direction,
"pos" = data.frame(one_tail = TRUE, upper_tail = TRUE), # upper-tail only (positive going anomalies)
"neg" = data.frame(one_tail = TRUE, upper_tail = FALSE), # lower-tail only (negative going anomalies)
"both" = data.frame(one_tail = FALSE, upper_tail = TRUE)
) # Both tails. Tail direction is not actually used.
# detect_anoms actually performs the anomaly detection and returns the results in a list containing the anomalies
# as well as the decomposed components of the time series for further analysis.
s_h_esd_timestamps <- detect_anoms(all_data[[i]],
k = max_anoms, alpha = alpha, num_obs_per_period = period,
use_decomp = TRUE, use_esd = FALSE,
one_tail = anomaly_direction$one_tail, upper_tail = anomaly_direction$upper_tail,
verbose = verbose
)
# store decomposed components in local variable and overwrite s_h_esd_timestamps to contain only the anom timestamps
data_decomp <- s_h_esd_timestamps$stl
s_h_esd_timestamps <- s_h_esd_timestamps$anoms
# -- Step 3: Use detected anomaly timestamps to extract the actual anomalies (timestamp and value) from the data
if (!is.null(s_h_esd_timestamps)) {
anoms <- all_data[[i]][(all_data[[i]][[1]] %in% s_h_esd_timestamps), ]
} else {
anoms <- data.frame(timestamp = numeric(0), count = numeric(0))
}
# Filter the anomalies using one of the thresholding functions if applicable
if (threshold != "None") {
# Calculate daily max values
periodic_maxs <- tapply(x[[2]], as.Date(x[[1]]), FUN = max)
# Calculate the threshold set by the user
if (threshold == "med_max") {
thresh <- stats::median(periodic_maxs)
} else if (threshold == "p95") {
thresh <- stats::quantile(periodic_maxs, .95)
} else if (threshold == "p99") {
thresh <- stats::quantile(periodic_maxs, .99)
}
# Remove any anoms below the threshold
anoms <- anoms[anoms[[2]] >= thresh, ]
}
all_anoms <- rbind(all_anoms, anoms)
seasonal_plus_trend <- rbind(seasonal_plus_trend, data_decomp)
}
# Cleanup potential duplicates
all_anoms <- all_anoms[!duplicated(all_anoms[[1]]), ]
seasonal_plus_trend <- seasonal_plus_trend[!duplicated(seasonal_plus_trend[[1]]), ]
# -- If only_last was set by the user, create subset of the data that represent the most recent day
if (!is.null(only_last)) {
start_date <- x[[1]][num_obs] - lubridate::days(7)
start_anoms <- x[[1]][num_obs] - lubridate::days(1)
if (gran == "day") {
# TODO: This might be better set up top at the gran check
breaks <- 3 * 12
num_days_per_line <- 7
} else {
if (only_last == "day") {
breaks <- 12
} else {
# We need to change start_date and start_anoms for the hourly only_last option
start_date <- lubridate::floor_date(x[[1]][num_obs] - lubridate::days(2), "day")
start_anoms <- x[[1]][num_obs] - lubridate::hours(1)
breaks <- 3
}
}
# subset the last days worth of data
x_subset_single_day <- x[x[[1]] > start_anoms, ]
x_subset_week <- x[(x[[1]] <= start_anoms) & (x[[1]] > start_date), ]
all_anoms <- all_anoms[all_anoms[[1]] >= x_subset_single_day[[1]][1], ]
num_obs <- length(x_subset_single_day[[2]])
}
# Calculate number of anomalies as a percentage
anom_pct <- (length(all_anoms[[2]]) / num_obs) * 100
# If there are no anoms, then let's exit
if (anom_pct == 0) {
if (verbose) message("No anomalies detected.")
return(data.frame())
}
# Fix to make sure date-time is correct and that we retain hms at midnight
all_anoms[[1]] <- format(all_anoms[[1]], format = "%Y-%m-%d %H:%M:%S")
# Store expected values if set by user
if (e_value) {
anoms <- data.frame(
timestamp = all_anoms[[1]], anoms = all_anoms[[2]],
expected_value = seasonal_plus_trend[[2]][as.character(as.POSIXlt(seasonal_plus_trend[[1]], tz = "UTC")) %in% all_anoms[[1]]],
stringsAsFactors = FALSE
)
} else {
anoms <- data.frame(timestamp = all_anoms[[1]], anoms = all_anoms[[2]],
stringsAsFactors = FALSE)
}
# Make sure we're still a valid POSIXct datetime.
# TODO: Make sure we keep original datetime format and timezone.
anoms$timestamp <- as.POSIXct(anoms$timestamp, tz = "UTC")
class(anoms) <- c("tbl_df", "tbl", "data.frame")
return(list(anoms,seasonal_plus_trend))
}
#' @rdname AnomalyDetectionTs
#' @export
ad_ts <- AnomalyDetectionTs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.