#wind data from Sable (source D Brickman 2020)
require(bio.lobster)
require(bio.utilities)
require(lubridate)
require(PBSmapping)
require(mgcv)
require(gratia)
dr = file.path(project.datadirectory('bio.lobster'),'data','wind')
a = read.table(file=file.path(dr, 'sable_daily.txt'),skip=13,header=T)
#meterological direction is where it comes from to where it is going with N as 0, first line of data states direction 62.5 which is ENE wind meterologically (and thus -ve u and -ve v)
# this data is incorrectly coded for direction (i.e. west is 270 instead of 0 as is typical)-- correcting the direction and recalculating U and Vspeeds so need to use
# the wspd and dir (which are correct) to fix the Uspd and Vspd where Uspd is the xdirection and Vspd is the ydirection
a$mathDir = 270 - a$Dir
a$Uspd = a$Wspd * sin(a$mathDir*pi/180)
a$Vspd = a$Wspd * cos(a$mathDir*pi/180)
a$Date = as.Date(with(a, paste(Year, Mo, Dy, sep="-")), '%Y-%m-%d')
port_loc = lobster.db("port_location")
logs = lobster.db("process.logs")
vlog = lobster.db("process.vlog.redo")
logs = merge(logs,port_loc,by.y='PORT_CODE',by.x='COMMUNITY_CODE')
tmp1 = subset(logs,select=c("DATE_FISHED","SYEAR","WEIGHT_KG","LFA.x","NUM_OF_TRAPS","GRID_NUM","COMMUNITY_CODE",'CENTLON','CENTLAT'))
tmp1$type = 'mandatory'
tmp2 = subset(vlog,select=c("FDATE","SYEAR","W_KG","N_TRP","LFA","X","Y",'PORT_CODE'))
names(tmp2) = c("DATE_FISHED","SYEAR","WEIGHT_KG","NUM_OF_TRAPS","subarea","CENTLON","CENTLAT","COMMUNITY_CODE")
tmp2$LFA.x = tmp2$subareas
tmp2 = assignArea(tmp2,coords=c("CENTLON","CENTLAT"))
tmp2 = subset(tmp2,select=c("DATE_FISHED","SYEAR","WEIGHT_KG","LFA","NUM_OF_TRAPS","LFA_GRID",'COMMUNITY_CODE','X',"Y"))
tmp2$type = 'voluntary'
names(tmp2) = names(tmp1)
cpue.data = rbind(tmp2,tmp1)
#WIND
xx = merge(cpue.data,a[,c('Year','Date','Dir','Wspd','Uspd','Vspd')],by.x='DATE_FISHED',by.y='Date')
a$DL1 = a$Date+1
a = rename.df(a,c('Dir','Wspd','Uspd','Vspd'),c('Dir_L1','Wspd_L1','Uspd_L1','Vspd_L1'))
xx = merge(xx,a[,c('DL1','Dir_L1','Wspd_L1','Uspd_L1','Vspd_L1')],by.x='DATE_FISHED',by.y='DL1')
a$DL2 = a$Date+2
a = rename.df(a,c('Dir_L1','Wspd_L1','Uspd_L1','Vspd_L1'),c('Dir_L2','Wspd_L2','Uspd_L2','Vspd_L2'))
xx = merge(xx,a[,c('DL2','Dir_L2','Wspd_L2','Uspd_L2','Vspd_L2')],by.x='DATE_FISHED',by.y='DL2')
a$DL3 = a$Date+3
a = rename.df(a,c('Dir_L2','Wspd_L2','Uspd_L2','Vspd_L2'),c('Dir_L3','Wspd_L3','Uspd_L3','Vspd_L3'))
xx = merge(xx,a[,c('DL3','Dir_L3','Wspd_L3','Uspd_L3','Vspd_L3')],by.x='DATE_FISHED',by.y='DL3')
#Start with 32
g = subset(xx,LFA.x =='32')
x = aggregate(cbind(WEIGHT_KG,NUM_OF_TRAPS)~DATE_FISHED+COMMUNITY_CODE+Uspd+Vspd+Year+Wspd+Dir+
Uspd_L1+Vspd_L1+Wspd_L1+Dir_L1+
Uspd_L2+Vspd_L2+Wspd_L2+Dir_L2+
Uspd_L3+Vspd_L3+Wspd_L3+Dir_L3
,data=g,FUN=sum)
x$CPUE = x$WEIGHT_KG / x$NUM_OF_TRAPS
x=x[order(x$DATE_FISHED),]
with(subset(x,Year==1985),plot(DATE_FISHED,CPUE,type='l'))
x$lWt = log(x$WEIGHT_KG)
x$lTr = log(x$NUM_OF_TRAPS)
x$Doy = yday(x$DATE_FISHED)
#does Wind affect effort on a given day?
## offset to max traps fished within season so that total reporting effort is captured
mT = aggregate(NUM_OF_TRAPS~Year+COMMUNITY_CODE,data=x, FUN=max)
names(mT)[2] = 'maxTraps'
x = merge(x,mT)
x$propMaxTraps = x$NUM_OF_TRAPS / x$maxTraps
outs = gam(propMaxTraps~ s(Year)+
s(Doy)+
s(Uspd,Vspd)
,data=subset(x,Year>1998), family = betar(link='logit'), method='REML')
#you will get a warning about saturation -- likely due to low dispersion parameter--not terribly concerning
#converting u and v to direction
uvToDir = function(u,v){
180+180/pi*atan2(v,u)
}
uvToSpeed = function(u,v){
sqrt(u^2+v^2)
}
x$COMMUNITY_CODEf = as.factor(x$COMMUNITY_CODE)
outs = gam(lWt~ s(Year)+
s(Doy)+
s(Uspd_L1,Vspd_L1)+
(COMMUNITY_CODEf)+
offset(lTr),data=x, method='REML')
vis.gam(outs,view=c('Uspd_L1','Vspd_L1'),plot.type='contour',too.far=.05)
#Add in Glorys Temperature Data
LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
#Get the unique EIDS from GLORYS data
L = subset(LFAs,PID==32)
fd = file.path(project.datadirectory('bio.lobster'),'data','GLORYS','SummaryFiles')
gL = dir(fd,full.names=T)
gL = gL[grep('Isobath',gL)]
EIDs = readRDS(gL[1])
EIDs = EIDs[!duplicated(EIDs[,c('X','Y','EID')]),c('X','Y','EID')]
I = findPolys(EIDs,L)$EID
g = subset(xx,LFA.x==32)
x = aggregate(cbind(WEIGHT_KG,NUM_OF_TRAPS)~DATE_FISHED+COMMUNITY_CODE+Uspd+Vspd+Year+Wspd+Dir+
Uspd_L1+Vspd_L1+Wspd_L1+Dir_L1+
Uspd_L2+Vspd_L2+Wspd_L2+Dir_L2+
Uspd_L3+Vspd_L3+Wspd_L3+Dir_L3
,data=g,FUN=sum)
#by LFA
out = list()
for(i in 1:length(gL)){
jk = readRDS(gL[i])
jk = subset(jk,EID %in% I & month(date) %in% 4:7 )
out[[i]] = jk
}
out = do.call(rbind,out)
aGL = aggregate(cbind(vo_surface,vo_bottom,thetao,uo_surface,uo_bottom,bottomT,zos)~date, data=out,FUN=median)
aGL$DATE = as.Date(aGL$date)
oo = merge(x,aGL, by.x='DATE_FISHED',by.y='DATE')
oo$lWt = oo$WEIGHT_KG
oo$lTr = oo$NUM_OF_TRAPS
oo$COMMUNITY_CODEf = as.factor(oo$COMMUNITY_CODE)
oo$Doy = yday(oo$DATE_FISHED)
#best model Feb 16
outs = gam(lWt~ s(Year)+
s(Uspd_L1,Vspd_L1)+
s(bottomT)+
s(bottomT, Doy)+
COMMUNITY_CODEf +
offset(lTr),data=oo, method='REML')
require(gratia)
draw(outs)
vis.gam(outs,view=c('bottomT','Doy'),plot.type='contour',too.far=.05)
#offset to max traps fished within season so that total reporting effort is captured
mT = aggregate(NUM_OF_TRAPS~Year+COMMUNITY_CODE,data=oo, FUN=max)
names(mT)[2] = 'maxTraps'
oo = merge(oo,mT)
oo$propMaxTraps = oo$NUM_OF_TRAPS / oo$maxTraps
outsEffort = gam(propMaxTraps~ s(Year)+
s(Doy)+
s(Uspd,Vspd)+
COMMUNITY_CODEf
,data=subset(oo,Year>1991), family = betar(link='logit'), method='REML')
draw(outsEffort)
savePlot('~/tmp/lfa32Effort.png')
outsCPUE = gam(lWt~ s(Year)+
s(Uspd_L1,Vspd_L1)+
s(bottomT)+
s(bottomT, Doy)+
COMMUNITY_CODEf +
offset(lTr),data=subset(oo,Year>1991), method='REML')
draw(outsCPUE,parametric=F)
savePlot('~/tmp/lfa32CPUE.png')
###############
##LFA 31A
g = subset(xx,LFA %in% c('311','31A'))
x = aggregate(cbind(WEIGHT_KG,NUM_OF_TRAPS)~DATE_FISHED+Uspd+Vspd+Year+Wspd+Dir+
Uspd_L1+Vspd_L1+Wspd_L1+Dir_L1+
Uspd_L2+Vspd_L2+Wspd_L2+Dir_L2+
Uspd_L3+Vspd_L3+Wspd_L3+Dir_L3
,data=g,FUN=sum)
x$CPUE = x$WEIGHT_KG / x$NUM_OF_TRAPS
x=x[order(x$DATE_FISHED),]
x$lWt = log(x$WEIGHT_KG)
x$lTr = log(x$NUM_OF_TRAPS)
x$Doy = yday(x$DATE_FISHED)
#does Wind affect effort on a given day?
## offset to max traps fished within season so that total reporting effort is captured
mT = aggregate(NUM_OF_TRAPS~Year,data=x, FUN=max)
names(mT)[2] = 'maxTraps'
x = merge(x,mT)
x$propMaxTraps = x$NUM_OF_TRAPS / x$maxTraps
outs = gam(propMaxTraps~ s(Year)+
s(Doy)+
s(Uspd,Vspd)
,data=x, family = betar(link='logit'), method='REML')
#you will get a warning about saturation -- likely due to low dispersion parameter--not terribly concerning
outs = gam(lWt~ s(Year)+
s(Doy)+
s(Uspd_L1)+
s(Vspd_L1) +
offset(lTr),data=x, method='REML')
#Add in Glorys Temperature Data
LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
#Get the unique EIDS from GLORYS data
L = subset(LFAs,PID==311)
fd = file.path(project.datadirectory('bio.lobster'),'data','GLORYS','SummaryFiles')
gL = dir(fd,full.names=T)
gL = gL[grep('Isobath',gL)]
EIDs = readRDS(gL[1])
EIDs = EIDs[!duplicated(EIDs[,c('X','Y','EID')]),c('X','Y','EID')]
I = findPolys(EIDs,L)$EID
out = list()
for(i in 1:length(gL)){
jk = readRDS(gL[i])
jk = subset(jk,EID %in% I & month(date) %in% 4:7 )
out[[i]] = jk
}
out = do.call(rbind,out)
aGL = aggregate(cbind(vo_surface,vo_bottom,thetao,uo_surface,uo_bottom,bottomT,zos)~date, data=out,FUN=median)
aGL$DATE = as.Date(aGL$date)
oo = merge(x,aGL, by.x='DATE_FISHED',by.y='DATE')
oo$lWt =log(oo$WEIGHT_KG)
oo$lTr = log(oo$NUM_OF_TRAPS)
outs = gam(lWt~ s(Year)+
s(Uspd_L1)+
s(Vspd_L1) + s(bottomT)+ s(bottomT, Doy)+
offset(lTr),data=oo, method='REML')
require(gratia)
draw(outs)
vis.gam(outs,view=c('bottomT','Doy'),plot.type='contour',too.far=.05)
##################
##31b
g = subset(xx,LFA %in% c('312','31B'))
x = aggregate(cbind(WEIGHT_KG,NUM_OF_TRAPS)~DATE_FISHED+Uspd+Vspd+Year+Wspd+Dir+
Uspd_L1+Vspd_L1+Wspd_L1+Dir_L1+
Uspd_L2+Vspd_L2+Wspd_L2+Dir_L2+
Uspd_L3+Vspd_L3+Wspd_L3+Dir_L3
,data=g,FUN=sum)
x$CPUE = x$WEIGHT_KG / x$NUM_OF_TRAPS
x=x[order(x$DATE_FISHED),]
x$lWt = log(x$WEIGHT_KG)
x$lTr = log(x$NUM_OF_TRAPS)
x$Doy = yday(x$DATE_FISHED)
#does Wind affect effort on a given day?
## offset to max traps fished within season so that total reporting effort is captured
mT = aggregate(NUM_OF_TRAPS~Year,data=x, FUN=max)
names(mT)[2] = 'maxTraps'
x = merge(x,mT)
x$propMaxTraps = x$NUM_OF_TRAPS / x$maxTraps
outs = gam(propMaxTraps~ s(Year)+
s(Doy)+
s(Uspd,Vspd)
,data=x, family = betar(link='logit'), method='REML')
#you will get a warning about saturation -- likely due to low dispersion parameter--not terribly concerning
outs = gam(lWt~ s(Year)+
s(Doy)+
s(Uspd_L1)+
s(Vspd_L1) +
offset(lTr),data=x, method='REML')
#Add in Glorys Temperature Data
LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
#Get the unique EIDS from GLORYS data
L = subset(LFAs,PID==312)
fd = file.path(project.datadirectory('bio.lobster'),'data','GLORYS','SummaryFiles')
gL = dir(fd,full.names=T)
gL = gL[grep('Isobath',gL)]
EIDs = readRDS(gL[1])
EIDs = EIDs[!duplicated(EIDs[,c('X','Y','EID')]),c('X','Y','EID')]
I = findPolys(EIDs,L)$EID
out = list()
for(i in 1:length(gL)){
jk = readRDS(gL[i])
jk = subset(jk,EID %in% I & month(date) %in% 4:7 )
out[[i]] = jk
}
out = do.call(rbind,out)
aGL = aggregate(cbind(vo_surface,vo_bottom,thetao,uo_surface,uo_bottom,bottomT,zos)~date, data=out,FUN=median)
aGL$DATE = as.Date(aGL$date)
oo = merge(x,aGL, by.x='DATE_FISHED',by.y='DATE')
oo$lWt =log(oo$WEIGHT_KG)
oo$lTr = log(oo$NUM_OF_TRAPS)
outs = gam(lWt~ s(Year)+
s(Uspd_L1)+
s(Vspd_L1) + s(bottomT)+ s(bottomT, Doy)+
offset(lTr),data=oo, method='REML')
require(gratia)
draw(outs)
vis.gam(outs,view=c('bottomT','Doy'),plot.type='contour',too.far=.05)
#################
##30
g = subset(xx,LFA %in% c('30'))
x = aggregate(cbind(WEIGHT_KG,NUM_OF_TRAPS)~DATE_FISHED+Uspd+Vspd+Year+Wspd+Dir+
Uspd_L1+Vspd_L1+Wspd_L1+Dir_L1+
Uspd_L2+Vspd_L2+Wspd_L2+Dir_L2+
Uspd_L3+Vspd_L3+Wspd_L3+Dir_L3
,data=g,FUN=sum)
x$CPUE = x$WEIGHT_KG / x$NUM_OF_TRAPS
x=x[order(x$DATE_FISHED),]
x$lWt = log(x$WEIGHT_KG)
x$lTr = log(x$NUM_OF_TRAPS)
x$Doy = yday(x$DATE_FISHED)
#does Wind affect effort on a given day?
## offset to max traps fished within season so that total reporting effort is captured
mT = aggregate(NUM_OF_TRAPS~Year,data=x, FUN=max)
names(mT)[2] = 'maxTraps'
x = merge(x,mT)
x$propMaxTraps = x$NUM_OF_TRAPS / x$maxTraps
outs = gam(propMaxTraps~ s(Year)+
s(Doy)+
s(Uspd,Vspd)
,data=x, family = betar(link='logit'), method='REML')
#you will get a warning about saturation -- likely due to low dispersion parameter--not terribly concerning
outs = gam(lWt~ s(Year)+
s(Doy)+
s(Uspd_L1)+
s(Vspd_L1) +
offset(lTr),data=x, method='REML')
#Add in Glorys Temperature Data
LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
#Get the unique EIDS from GLORYS data
L = subset(LFAs,PID==30)
fd = file.path(project.datadirectory('bio.lobster'),'data','GLORYS','SummaryFiles')
gL = dir(fd,full.names=T)
gL = gL[grep('Isobath',gL)]
EIDs = readRDS(gL[1])
EIDs = EIDs[!duplicated(EIDs[,c('X','Y','EID')]),c('X','Y','EID')]
I = findPolys(EIDs,L)$EID
out = list()
for(i in 1:length(gL)){
jk = readRDS(gL[i])
jk = subset(jk,EID %in% I & month(date) %in% 4:7 )
out[[i]] = jk
}
out = do.call(rbind,out)
aGL = aggregate(cbind(vo_surface,vo_bottom,thetao,uo_surface,uo_bottom,bottomT,zos)~date, data=out,FUN=median)
aGL$DATE = as.Date(aGL$date)
oo = merge(x,aGL, by.x='DATE_FISHED',by.y='DATE')
oo$lWt =log(oo$WEIGHT_KG)
oo$lTr = log(oo$NUM_OF_TRAPS)
outs = gam(lWt~ s(Year)+
s(Uspd_L1)+
s(Vspd_L1) + s(bottomT, Doy) +
offset(lTr),data=oo, method='REML')
require(gratia)
draw(outs)
vis.gam(outs,view=c('bottomT','Doy'),plot.type='contour',too.far=.05)
##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36
##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36
##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36##LFA 36
require(bio.lobster)
require(bio.utilities)
require(lubridate)
require(PBSmapping)
require(mgcv)
logs = lobster.db("process.logs")
port_loc = lobster.db("port_location")
fd = file.path(project.datadirectory('bio.lobster'),'data','GLORYS','SummaryFiles')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.