if(getRversion() >= "2.15.1"){
utils::globalVariables( names=c('all_net', 'network_list'), package='RITAN')
}
#' as.graph
#'
#'wrapper to convert a data.frame from RITAN an igraph graph object
#'
#' @param mat matrix or data frame describing a network
#' @param p1 [1] column of first interactor
#' @param p2 [3] column of second interactor
#' @param ... further options passed on to igraph::graph()
#'
#' @return igraph object
#' @export
#'
#' @examples
#' \dontrun{
#' G <- as.graph(network_list$PID)
#' }
as.graph <- function( mat, p1 = 1, p2 = 3, ... ){
# e.g. as.matrix( network_list$PID[, c(1,3)] ) %>% t(.) %>% c(.) %>% graph(.)
graph( c(t( as.matrix(mat[, c(p1,p2)]) )), ... )
}
#' write_simple_table
#'
#'This is a simple wrapper around "write.table" that writes a tab-delimited table with column names, no quoting, and no row names.
#'
#' @param d R data object
#' @param f file path
#' @param ... further options passed on to write.table
#'
#' @return invisible (nothing is returned)
#' @export
#'
#' @examples
#' \dontrun{
#' simple wrapper around write.table for writing a tab-delimieted, no row names, tab-seperated file
#' }
write_simple_table <- function(d=NULL,f=NULL,...){
write.table(d,f, quote = FALSE, sep="\t", col.names = TRUE, row.names = FALSE,...)
invisible(NULL)
}
### ---------------------------------------------------------------- -
### Get the network to use
### ---------------------------------------------------------------- -
#' readSIF
#'
#'This function reads a data table into R; the data table describes network interactions. It is named for the Simple Interaction Format (SIF), but can read any data table if the users identifies which columns contain the pertinent data (see below).
#'
#'The SIF file format is a 3-column format, with an optional 4th column:
#'<entity-1><tab><edge-type><tab><entity-2><tab><score>
#'
#'Entities may be genes, proteins, metabolites, etc. The edge type typically conveys the type of relationship that exists between the two entities, such as physical interaciton, phosphorylation, or activation.
#'
#' @param file location of file
#' @param header indicator of presense of header on file
#' @param sep file delimiter - used by read.table()
#' @param as.is logical (default TRUE)
#' @param p1 Column number for the 1st entity. Default = 1.
#' @param p2 Column number for the 2nd entity. Default = 2.
#' @param et Column number for the edge type. Default = 3. Optionally, it may be a string label to be used as the edge type for all interactions from the input file.
#' @param score Column number for edge scores or weights. Default = NA (no score read).
#' @param ... Other options to read.table().
#'
#' @return Returns a data.frame with 3 (or 4) columns of data.
#' @export
#'
#' @examples
#' # Make a simple example to show the SIF file format
#' s <- matrix(c('gene1','gene2','PPI',
#' 'gene1','gene3','Chip-Seq',
#' 'gene4','gene5','PPI'), ncol=3, byrow=TRUE)
#' \dontrun{
#' # Read a SIF file
#' write.table( s, "myFile.sif", sep='\t', col.names=FALSE, row.names=FALSE )
#' sif <- readSIF("myFile.sif")
#' }
readSIF <- function( file = NA, header = FALSE, sep="\t", as.is=TRUE,
p1=1, p2=2, et=3, score=NA, ... ){
if (all(is.na(file))){
stop('Please provide a valid file:
readSIF("myfile") where myfile is a tab-delimited file with 3 columns. Each row of the file describes an edge in a network. By default, the first and second columns are genes/proteins/etc and the third column describes the interaction type. The optional fourth column contains a score or weight for the edge.')
return(invisible(NULL))
}
if ( (!( is(et,'character') | is(et,'numeric')) ) || any(is.na(et)) || (length(et) != 1) ){
stop('The edge type "et" must be a column number or string label. If a string label, all edges from the indicated file will have edge type "et."')
}
tmp <- read.table( file, header=header, sep=sep, as.is=as.is, ... )
if (is.numeric(et)){
sif <- data.frame( p1 = tmp[,p1],
edge_type = tmp[,et],
p2 = tmp[,p2], stringsAsFactors=FALSE )
} else {
sif <- data.frame( p1 = tmp[,p1],
edge_type = et,
p2 = tmp[,p2], stringsAsFactors=FALSE )
}
if (!all(is.na(score))){
sif$score <- tmp[,score]
}
return(sif)
}
#' check_net_input
#'
#'A Quality Control function. This function will compare an input list of genes to a network reference and report if each member of the input is present in the resource.
#'
#' @param set An input list of genes to check against a reference.
#' @param ref A reference of network data. See readSIF().
#' @param check4similar Logical flag. If TRUE, a case-insensitive grep will be used for name matching. For genes in families with many related members (e.g. ABC*, FAM*, etc.), this will not be ideal. We intend this option as a QC screening method to identify if case, punctuaiton, etc is causing fewer than expected matches.
#' @param entity1name The column name in "ref" of the first entity. Default = "p1."
#' @param entity2name The column name in "ref" of the second entity. Default = "p2."
#'
#' @return Character vector of "yes/no" indicating "within-ref/not"
#' @export
#'
#' @examples
#' ## Return a "yes/no" vector indicating if each gene in myGeneSet is annotated with any term in GO
#' ## If no match, this function can attempt to suggest closest matches (check4similar = TRUE)
#' library(RITANdata)
#' myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
#' yorn <- check_net_input( myGeneSet, network_list[["CCSB"]] )
#' print(yorn)
#'
#' yorn <- check_net_input( myGeneSet, network_list[["PID"]] )
#' print(yorn)
#'
#' ## See check_any_net_input() for efficiently checking across all resources.
check_net_input <- function( set, ref, check4similar = FALSE,
entity1name = "p1", entity2name = "p1" ){
q <- sapply( set, function(x){
h1 <- grepl( sprintf('^%s$',x), ref[[ entity1name ]], ignore.case = FALSE, perl=TRUE )
h2 <- grepl( sprintf('^%s$',x), ref[[ entity2name ]], ignore.case = FALSE, perl=TRUE )
if (any(h1|h2)){
return('yes')
} else {
if (check4similar){
h1 <- grepl( sprintf('%s',x), ref[[ entity1name ]], ignore.case = TRUE, perl=TRUE )
h2 <- grepl( sprintf('%s',x), ref[[ entity2name ]], ignore.case = TRUE, perl=TRUE )
r <- NULL
if (any(h1)){ r <- ref[[ entity1name ]][h1] ; }
if (any(h2)){ r <- c(r, ref[[ entity2name ]][h2]); }
if (!all(is.null(r))){
return( sprintf('Potential Match: %s', paste( unique(r),sep=',',collapse = ',')) )
}
}
return('no')
}
})
return(q)
}
#' check_any_net_input
#'
#'A Quality Control function. This function applies check_net_input() to all available resources (default).
#'
#' @param set An input list of genes to check against references.
#' @param resources The collection of network resources to check within.
#'
#' @return Logical vector indicating if the genes in "set" are within ANY of the resources.
#' @export
#'
#' @examples
#' #' ## Check if genes in myGeneSet are annotated by any resource in "network_list" (default).
#' library(RITANdata)
#' myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
#' yorn <- check_any_net_input( myGeneSet )
#' print(yorn)
check_any_net_input <- function(set, resources = names(network_list) ){
# if (all(resources %in% names(network_list))){
# } else {
# #warning('STRING and HPRD are now implemented as package calls, rather than indexed in network_list. Thus, they are not accessible to check_net_input()... This is on our "to-do" list...')
# # if (x == 'STRING'){
# #
# # } else if (x == 'HPRD'){
# #
# # } else if (x == 'Biogrid'){
# #
# # }
# }
o <- lapply( network_list[resources] , function(y){
check_net_input( set, y, check4similar = FALSE )
} )
a <- do.call( cbind, o )
y <- apply( a, 1, function(y){ any(y=='yes') } )
return(y)
}
# ### ---------------------------------------------------------------- -
# ### Gene Network from shared GO term similarity
# ### ---------------------------------------------------------------- -
# # GOSimNET
# #
# # param g List of genes to generate symantic similarities among.
# # param symbols Logical flag for if "g" contains gene symbols or gene IDs.
# # param ont Which ontology within GO to use. Default is "BP" for Biologic Process.
# # param measure Distance measure to use. Defult is "Wang."
# # param mart BioMart mart object
# # param ... further arguments passed on to mgeneSim()
# #
# # return The similarity matrix beteen all input pairs of "g"
# #
# #
# # examples
# # dontrun{
# # ## This is a wrapper around functions from the package "GOSemSim"
# # ## Example 1:
# # g <- c('BRCA1','BRCA2','GSTM1','PTEN','PIK3CA')
# # n <- GOSimNet( g )
# #
# # ## Example 2:
# # g <- c("835","5261","241","994")
# # n <- GOSimNet( g, symbols = FALSE )
# # }
# GOSimNet <- function( g = NA, symbols = TRUE, ont="BP", measure="Wang", mart = NULL, ... ){
#
# if ( (length(g)==1) & is.na(g) ){
# stop('Please provide a list of genes, either as HGNC symbols or enterz IDs (set symbols=FALSE).')
# }
#
# # if (!requireNamespace("BiocManager", quietly=TRUE))
# # install.packages("BiocManager")
# # BiocManager::install("GOSemSim")
# # BiocManager::install("org.Hs.eg.db")
# require(GOSemSim)
# ## If you use GOSemSim in published research, please cite: G Yu, F Li, Y Qin, X Bo, Y Wu, S Wang.
# ## GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatcs 2010, 26(7):976-978.
#
#
# if (symbols){
# ## symbols given. Map to Entrez gene IDs
#
# require(biomaRt)
# if (all(is.null(mart))){
# ## get Mart, unless one was privided
# mart <- useMart("ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl", host="useast.ensembl.org")
# }
#
# s <- g
# to_get <- c('hgnc_symbol', 'entrezgene')
# o <- getBM(attributes = to_get, filters = 'hgnc_symbol', values = s, mart = mart )
# g <- as.character(unique(o$entrezgene))
#
# }
#
# m <- mgeneSim( genes = g, ont=ont, organism="human", measure=measure, verbose=FALSE, ...)
#
# if (symbols){
# e <- as.character(o$entrezgene)
# i <- match( e, g )
# if(any( e[i] != g )){ stop('Name mismatch.') }
# rownames(m) <- colnames(m) <- o$hgnc_symbol[i]
# }
#
# return(m)
#
# # We also implemented clusterSim for calculating semantic similarity between two gene clusters, and mclusterSim for calculating semantic similarities among multiple gene clusters.
# # GO enrichment analysis can be supported by our package clusterProfiler [10], which supports hyper-geometric test and Gene Set Enrichment Analysis (GSEA). Enrichment results across different gene clusters can be compared using compareCluster function.
#
# }
### ---------------------------------------------------------------- -
### Get the network to use
### ---------------------------------------------------------------- -
#' network_overlap
#'
#' @param gene_list A list of genes to use. The function will identify edges across resources for or among these genes; identify the induced subnetwork around the gene_list.
#' @param resources Name of network resource(s) to use.
#' @param minStringScore If STRING is among the resources, only edges of at least the indicated score will be included.
#' @param minHumanNetScore If HumanNet is among the resources, only edges of at least the indicated score will be included.
#' @param minScore Same as above, but used for any other networks where "score" is provided
#' @param verbose If TRUE (default), the function will update the user on what it is doing and how many edges are identified for each resource.
#' @param dedup If TRUE (Default = TRUE), remove edges reported by multiple resources. The edge type will be a semi-colon delimited list of the resources that had reported the interaction.
#' @param directed_net Logical indicating if the network resources should be interpreted as directed.
#' @param include_neighbors Logical to include 1st neighbors of "gene_list" (genes not in gene_list, but directly connected to them) in the induced subnetwork.
#' @param STRING_cache_directory A direcotry where STRING data files are cached to speed up subsequent queries; no need to re-download. If NA (the default), caches STRING data in your Rpackages directory. If "", uses a temporary directory that is cleared when the R-session closes.
#' @param STRING_species Sepcies taxon ID (number) to use in searching STRING data. (Default = 9606)
#' @param STRING_version Version of the STRING database (Default = "10")
#'
#' @return Data table describing the induced subnetwork for "gene_list" across the requested resources.
#' @import STRINGdb igraph MCL linkcomm dynamicTreeCut sqldf gsubfn hash
#' @export
#'
#' @examples
#' ## Get interactions among a list of genes from the PID: Pathway Interaction Database
#' require(RITANdata)
#' myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
#' sif <- network_overlap( myGeneSet, resources = 'PID')
#' print(sif)
#'
#' \dontrun{
#' ## Get the PPI network induced by genes within myGeneSet
#' ## Use 4 seperate resources, but trim STRING to only include more confident interactions
#' sif <- network_overlap( myGeneSet, c('dPPI','PID','CCSB','STRING'), minStringScore = 500 )
#' }
network_overlap <- function( gene_list = NA, resources = c('PID','TFe','dPPI','CCSB','STRING'),
minStringScore = 700, # 7.8% have a score >= 0.7
minHumanNetScore = 0.4, # 0.5 ==> 84.8%, 1.0 ==> 44.7%, 1.5 ==> 25.8%, 2.0 ==> 12.9%, 2.5 ==> 6.6%, 3.0 ==> 3.0%
minScore = 0,
verbose = TRUE,
dedup = TRUE,
directed_net = FALSE,
include_neighbors = FALSE,
STRING_cache_directory = NA,
STRING_species = 9606,
STRING_version = "10"
) {
return_full_network <- FALSE
if ( all(is.na(gene_list)) ||
(!is(gene_list, 'character')) ||
(length(gene_list) == 0) ){
if (verbose){
cat('** No input list provided.\n** The full edge list from requested networks will be returned.\n')
}
return_full_network <- TRUE
net <- do.call( rbind, lapply( resources, function(x){
network_list[[x]][, c('p1','edge_type','p2') ] }) )
return( net )
}
##
supportedNetworks <- unique(c(names(network_list), 'STRING' ))
i <- (resources %in% supportedNetworks) | (file.exists(resources))
if (any(!i)){
w1 <- sprintf(' Unsupported Networks Requested: %s\n', paste(resources[!i], sep=',', collapse=',') )
w2 <- sprintf(' Supported Networks Are: %s\n', paste(supportedNetworks, sep=',', collapse=',') )
w <- paste0( w1, w2 )
warning( w )
}
if (verbose){
cat(sprintf('\nGenerating %sdirected subnetwork...\n', ifelse( directed_net, '', 'un') ))
}
if (directed_net){ stop('directed networks not yet implemented.') }
n0 <- length(unique(gene_list))
## -------------------------- -
select_edges <- function( x, inc_nei = include_neighbors, gs = gene_list ){
y <- network_list[[x]][, c('p1','edge_type','p2') ]
if (inc_nei){
i <- (y$p1 %in% gs) | (y$p2 %in% gs)
} else {
i <- (y$p1 %in% gs) & (y$p2 %in% gs)
}
if ("score" %in% names(network_list[[x]]) ){
if (x == 'HumanNet'){
i <- i & (network_list[[x]]$score >= minHumanNetScore)
#} else if (x == 'STRING'){
# i <- i & (network_list[[x]]$score >= minStringScore)
} else {
i <- i & (network_list[[x]]$score >= minScore)
}
}
return(y[i,])
}
## -------------------------- -
## Get all interactions for resources in "network_list"
NetInList <- resources[ resources %in% names(network_list) ]
sif <- data.frame( p1=character(0), edge_type=character(0), p2=character(0), stringsAsFactors=FALSE)
sif <- do.call( rbind, lapply( NetInList , select_edges ) )
## Add neighbors, if requested
if (include_neighbors){
## The first round is really to define which nodes/genes to consider.
## This second round will get all the edges within the full list.
## Without two rounds, we would just have "stars" around the input genes
## and we'd miss the edges among neighbors.
gene_list2 <- unique(c( gene_list, sif$p1, sif$p2 ))
sif <- do.call( rbind, lapply( NetInList , function(x){
select_edges(x, inc_nei = FALSE, gs = gene_list2 )
} ) )
}
## Check if anything was included - this is to prevent a NULL return
if (is.null(dim(sif))){
sif <- data.frame( p1=character(0), edge_type=character(0), p2=character(0), stringsAsFactors=FALSE)
}
## -------------------------- -
## Initiate loader for STRING data
if ('STRING' %in% resources){
if (requireNamespace("STRINGdb", quietly = TRUE)) {
map.input.to.STRING <- function( genes = NULL, s. = s, removeUnmappedRows = TRUE ){
if (is(genes, 'character')){
genes <- data.frame(gene = genes)
} else if ( (is(genes, 'data.frame')) && ('gene' %in% names(genes)) ){
} else {
stop('Input should be a character vector of gene names/ids or a data frame with a column named "gene"')
}
mapped <- s.$map( genes, "gene", removeUnmappedRows = removeUnmappedRows )
return(mapped)
}
if (all( is.na(STRING_cache_directory) )){
j <- sapply( .libPaths(), function(x){
d <- list.dirs(x, recursive = FALSE)
i <- grepl('STRINGdb', d)
return(sum(i))
})
if (all(j==0)){
stop('I could not find STRINGdb in your .libPaths() - please ensure that STRINGdb is installed and in .libPaths().')
}
p <- .libPaths()[ which.max(j) ]
STRING_cache_directory <- paste( p, 'STRINGdb.cache', sep='/' )
# check if both directorise are writable
if ( ( file.access(STRING_cache_directory,2) == -1 ) ||
( file.access(p,2) == 1 ) ){
stop('You do not have write access to STRING_cache_directory. You have requested to use STRING. Please change STRING_cache_directory to a directory that you have write permission for.')
}
dir.create(file.path(p, 'STRINGdb.cache'), showWarnings = FALSE)
if (verbose){
if ( length(list.files(STRING_cache_directory)) > 0 ){
cat(sprintf('\tUsing previously cached STRING data files.'), sep="\n")
} else {
cat(sprintf('\tWe have detected that STRINGdb is installed here: %s
\tWe will cache data from STRING here: %s
\tTo override this behavior, please specify a "STRING_cache_directory."
\tTo use a temporary directory, set STRING_cache_directory=""',
p, STRING_cache_directory ), sep="\n")
}
}
}
s <- STRINGdb::STRINGdb$new( version = STRING_version,
species = STRING_species,
score_threshold = minStringScore, # STRINGdb default = 400
input_directory = STRING_cache_directory )
invisible(s$get_graph()) # loads all of STRING into igraph object
input.genes.mapped <- map.input.to.STRING( genes = gene_list, s. = s )
g <- input.genes.mapped$STRING_id
vertex.names <- get.vertex.attribute(s$graph,'name')
vertex.search <- g[ g %in% vertex.names ]
if (include_neighbors){
n <- unique(unlist(sapply( vertex.search, function(x){ s$get_neighbors(x) })))
i <- s$get_interactions( unique(c(g,n)) )
# mapping_file <- 'ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/locus_groups/protein-coding_gene.txt'
mapping_file <- 'ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_complete_set.txt'
tmp <- read.table( mapping_file, sep="\t", header=TRUE, as.is=TRUE, quote="", comment.char = '' )
all.genes <- unique( tmp[, 'symbol' ])
all.map <- map.input.to.STRING( genes = all.genes, s. = s )
} else {
i <- s$get_interactions(g)
all.map <- input.genes.mapped
}
## NOTE: Of the two METHODS below, #2 better utilizes BioConductor standards, but #1 mapped more ENSPs to gene symbols.
## Thus, I have kept using #1 for now... and its assumption that the user can read a public ftp://
## -- METHOD 1 -- Translate output to symbol from current ensembl mapping
m.f <- match( i$from, all.map$STRING_id )
m.t <- match( i$to , all.map$STRING_id )
i$from.symbol <- all.map$gene[m.f]
i$from.symbol[ is.na(i$from.symbol) ] <- i$from[ is.na(i$from.symbol) ]
i$to.symbol <- all.map$gene[m.t]
i$to.symbol[ is.na(i$to.symbol ) ] <- i$to[ is.na(i$to.symbol ) ]
## -- METHOD 2 -- Get the mapping from ENSP to symbol
# i$from.symbol <- mapIds(hgu95av2.db,
# keys=as.character(sapply( i$from, function(x){ strsplit(x,'.',fixed=TRUE)[[1]][2]} )),
# column="SYMBOL", keytype="ENSEMBLPROT", multiVals="first")
#
# i$to.symbol <- mapIds(hgu95av2.db,
# keys=as.character(sapply( i$to, function(x){ strsplit(x,'.',fixed=TRUE)[[1]][2]} )),
# column="SYMBOL", keytype="ENSEMBLPROT", multiVals="first")
## Add STRING interactions to the output
sif <- rbind( sif, data.frame( p1 = as.character( i$from.symbol ),
edge_type = sprintf('STRING%d',
round(i$combined_score/100)*100),
p2 = as.character( i$to.symbol ), stringsAsFactors=FALSE
))
} else {
stop('STRING was requested, but the required package STRINGdb was not found by requireNamespace...')
}
}
## -------------------------- -
## Initiate loader for HPRD data
#if ('HPRD' %in% resources){
# if (requireNamespace("ProNet", quietly = TRUE)) {
#
# hprd <- ProNet::construction(db="HPRD", ID.type= c("Gene symbol"), species = ProNet_species )
# id.hprd.match <- match( gene_list, V(hprd)$name )
# v <- id.hprd.match[ !is.na(id.hprd.match) ]
# g.hprd <- induced.subgraph(hprd, v)
#
# if (include_neighbors){
# n <- unique(unlist(sapply( v, function(x){ as.numeric(neighbors(hprd,x)) })))
# g.hprd <- induced.subgraph(hprd, unique(c(v, as.numeric(n))))
# }
#
# i <- get.edgelist(g.hprd, names=TRUE)
#
# sif <- rbind( sif, data.frame( p1 = as.character( i[, 1]),
# edge_type = rep('HPRD', dim(i)[1] ),
# p2 = as.character( i[, 2] ), stringsAsFactors=FALSE
# ))
# } else {
# stop('HPRD was requested, but the required package ProNet was not found by requireNamespace...')
# }
#
#}
## -------------------------- -
## Initiate loader for BioGrid data
#if ('Biogrid' %in% resources){
# if (requireNamespace("ProNet", quietly = TRUE)) {
#
# biog <- ProNet::construction(db="Biogrid",ID.type= c("Gene symbol"), species = ProNet_species )
#
# id.biog.match <- match( gene_list, V(biog)$name )
# v <- id.biog.match[ !is.na(id.biog.match) ]
# g.biog <- induced.subgraph(biog, v)
#
# if (include_neighbors){
# n <- unique(unlist(sapply( v, function(x){ as.numeric(neighbors(biog,x)) })))
# g.biog <- induced.subgraph(biog, unique(c(v, as.numeric(n))))
# }
#
# i <- get.edgelist(g.biog, names=TRUE)
#
# sif <- rbind( sif, data.frame( p1 = as.character( i[, 1] ),
# edge_type = rep('Biogrid', dim(i)[1] ),
# p2 = as.character( i[, 2] ), stringsAsFactors=FALSE
# ))
#
# } else {
# stop('Biogrid was requested, but the required package ProNet was not found by requireNamespace...')
# }
#
#}
## -------------------------- -
## Read in user-supplied SIF files (assumes SIF file format)
if( any(file.exists(resources)) ){
f <- which(file.exists(resources))
for (fi in f){
if (verbose){
cat(sprintf('Reading SIF file: %s', resources[fi]), sep="\n" )
}
y <- readSIF( resources[fi] )
if (include_neighbors){
hit <- (y$p1 %in% gene_list) | (y$p2 %in% gene_list)
} else {
hit <- (y$p1 %in% gene_list) & (y$p2 %in% gene_list)
}
if (dim(y)[2] >= 4){
hit <- hit & (y[,4] >= minScore)
}
if (verbose){
cat(sprintf('\tidentified %d edges', sum(hit) ), sep="\n" )
}
if (any(hit)){
sif <- rbind( sif, y[ hit, 1:3] )
}
}
}
## -------------------------- -
row_NA <- apply(sif,1,function(x){any(is.na(x))})
if (any(row_NA)){
warning(sprintf('\nWe have detected NAs in %d rows. These rows will be removed. They are most likely from ENSPs in STRING that do not map to a gene symbol... We are working to improve the mappings used to prevent these occurrences.\n', sum(row_NA)))
sif <- sif[ !row_NA, ]
}
## -------------------------- -
if(dedup && (dim(sif)[1] > 0) ){
if (verbose){
cat('\nRemoving duplicate edges and self-loops...\n')
}
## easiest reduction first: full duplicates
sif <- unique(sif)
## remove self loops
## NOTE: this can "remove" nodes from the network if the self-loop is the only edge they have
i <- sif$p1 == sif$p2
if (any(i)){
sif <- sif[ !i, ]
}
## collapse duplicate edges
if (directed_net){
# unique and directed.
tmp <- sif[,c(1,3)]
} else {
# need to sort genes within each row - this operation preserves row order
tmp <- t(apply( sif, 1, function(x){ sort(x[c(1,3)]) } ))
}
## ignore "source" for detecting duplicates
i <- duplicated(tmp)
if (any(i)){
## But, retain "source" labels in the output
to_remove <- unique(tmp[i,])
for ( j in 1:dim(to_remove)[1] ){
k <- ( (sif$p1 == to_remove[j,1]) & (sif$p2 == to_remove[j,2]) ) |
( (sif$p1 == to_remove[j,2]) & (sif$p2 == to_remove[j,1]) )
sif$edge_type[ k & (!i) ] <- paste( sort(unique( sif$edge_type[ k ] )), sep=';', collapse=';' )
}
sif <- sif[ !i, ]
}
}
if (verbose){
n <- unlist(sif[,c(1,3)])
if (!return_full_network){
cat(sprintf('Total induced subnetwork from %d genes has %d nodes and %d edges (%d unique).\n',
n0, length(unique(n)), dim(sif)[1], dim(unique(sif[,c(1,3)]))[1] ))
} else {
cat(sprintf('Total network has %d nodes and %d edges.\n', length(unique(n)), dim(sif)[1] ))
}
}
## Add attributes to the output so that we can always check what was actually run.
attr(sif,'param') <- data.frame( 'resources' = resources,
'minStringScore' = minStringScore,
'minHumanNetScore' = minHumanNetScore,
'minScore' = minScore,
'dedup' = dedup,
'directed_net' = directed_net,
'include_neighbors' = include_neighbors,
'STRING_cache_directory' = STRING_cache_directory,
'STRING_species' = STRING_species,
'STRING_version' = STRING_version
)
## done
return(sif)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.