#' Static analysis.
#'
#' Identify for each corresponding timepoint of the two datasets the consensus
#' network. Protein intersection of the omics data and TF intersection are
#' linked via SteinerTree algorithm applied on STRING protein-protein
#' interaction database.
#' The Steiner tree algorithm refers to the shortest path heuristic algorithm
#' of [1,2].
#' Target genes of this consensus network are identified via the chosen
#' TF-target gene database(s). Please note that the consensus graphs can be
#' different as in the Steiner Tree algorithm the start terminal node is
#' picked arbitrarily and there are always several shortest path distances.
#' By default the same time points of both data sets are considered.
#'
#' @references 1. Path heuristic and Original path heuristic, Section 4.1.3 of
#' the book "The Steiner tree Problem", Peter L. Hammer
#' @references 2. "An approximate solution for the Steiner problem in graphs",
#' H Takahashi, A Matsuyama
#'
#'
#' @param data_omics OmicsData object.
#' @param run_times integer specifying number of times to run SP Steiner tree
#' algorithm to find minimal graph, default is 3.
#' @param updown boolean value; TRUE in case up- and downregulation should be
#' checked individually for intersection. Type of checking is defined with
#' parameter 'phospho'.
#' @param phospho boolean value; TRUE in case up- and downregulation should be
#' checked based on provided downstream phosphoprotein influence from
#' identifyPR function; FALSE in case up- and downregulation should be checked
#' for without phosphoprotein database knowledge. Default is TRUE.
#' @param tp_prot integer specifying the time point that should be included
#' into the static consensus net for the phosphoprotein data
#' @param tp_gene integer specifying the time point that should be included
#' into the static consensus net for the transcriptome data
#'
#' @return list of igraph objects; length corresponds to number of overlapping
#' time points from upstream and downstream analysis.
#' @keywords manip
#' @export
#' @examples
#' \dontrun{
#' data(OmicsExampleData)
#' data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),
#' tp_genes = c(1, 4, 8, 13, 18, 24), OmicsExampleData,
#' PWdatabase = c("biocarta", "kegg", "nci", "reactome"),
#' TFtargetdatabase = c("userspec"))
#' data_omics = readPhosphodata(data_omics,
#' phosphoreg = system.file("extdata", "phospho_reg_table.txt",
#' package = "pwOmics"))
#' data_omics = readTFdata(data_omics,
#' TF_target_path = system.file("extdata", "TF_targets.txt",
#' package = "pwOmics"))
#' data_omics_plus = readPWdata(data_omics,
#' loadgenelists = system.file("extdata/Genelists", package = "pwOmics"))
#'
#' data_omics_plus = identifyPR(data_omics_plus)
#' setwd(system.file("extdata/Genelists", package = "pwOmics"))
#' data_omics = identifyPWs(data_omics_plus)
#' data_omics = identifyTFs(data_omics)
#' data_omics = identifyRsofTFs(data_omics,
#' noTFs_inPW = 1, order_neighbors = 10)
#' data_omics = identifyPWTFTGs(data_omics)
#' statConsNet = staticConsensusNet(data_omics)
#' }
staticConsensusNet <- function(data_omics, run_times = 3, updown = FALSE,
tp_prot = NULL, tp_gene = NULL, phospho = TRUE) {
if(class(data_omics) != "OmicsData")
{stop("Parameter 'data_omics' is not an OmicsData object.")}
requireNamespace("STRINGdb", quietly = TRUE)
string_db = STRINGdb$new(version = "10", species = 9606,
score_threshold = 0, input_directory = "")
PPI_graph = getSTRING_graph(string_db)
if(is.null(tp_prot) & is.null(tp_gene))
{same_tps = data_omics[[1]][[1]][[1]][[1]][which(data_omics[[1]][[1]][[1]][[1]]
%in% data_omics[[1]][[1]][[1]][[2]])]
if(length(same_tps) == 0)
{stop("No matching time points were found in the two
corresponding data sets.")}
ST_proteins = vector()
consensus_graph = list()
for(tps in 1: length(same_tps))
{
STRINGIDs = getConsensusSTRINGIDs(data_omics, tps, string_db, updown, phospho)
if(dim(STRINGIDs)[1]>0)
{message("Consensus graph for time point ", same_tps[tps],
" was generated.\n")
ST_net = SteinerTree_cons(STRINGIDs$STRING_id,
PPI_graph, run_times)
ST_net = getAliasfromSTRINGIDs(data_omics, ST_net, updown, phospho,
STRINGIDs, tps, string_db)
V(ST_net)$label.cex = 1
plot(ST_net, main = paste("Steiner tree of consensus graph\n time ",
same_tps[tps], sep = ""))
legend(x = 0, y = -1.2 , legend = c("consensus proteins",
"steiner node proteins", "consensus TFs"),
fill = c("red", "yellow", "lightblue"), cex = 0.7)
message("Steiner tree of consensus graph for time point ", same_tps[tps],
" was build.\n")
ST_TFTG = getbipartitegraphInfo(data_omics, tps, updown, phospho)
ST_net_targets = genfullConsensusGraph(ST_net, ST_TFTG)
V(ST_net_targets)$label.cex = 0.6
plot.igraph(ST_net_targets, main = paste("Consensus graph\n time ",
same_tps[tps], sep = ""), vertex.size = 18)
if("yellow" %in% V(ST_net_targets)$color)
{legend(x = 0, y = -1.2 , legend = c("consensus proteins",
"steiner node proteins", "consensus TFs", "consensus target genes"),
fill = c("red", "yellow", "lightblue", "green"), cex = 0.7)
}else{
legend(x = 0, y = -1.2 , legend = c("consensus proteins",
"consensus TFs", "consensus target genes"),
fill = c("red", "lightblue", "green"), cex = 0.7)
}
ST_net_targets = addFeedbackLoops(ST_net_targets)
consensus_graph[[tps]] = ST_net_targets
}else{
consensus_graph[[tps]] = NA
message("Not enough intersecting molecules to generate
a consensus graph for time point ", same_tps[tps], "\n")
}
}
names(consensus_graph) = as.character(same_tps)
}else{
ST_proteins = vector()
consensus_graph = list()
TF_proteins = getTFIntersection(data_omics, tp_prot, tp_gene, updown, phospho)$TF_Intersection
proteins = c(getProteinIntersection(data_omics, tp_prot, tp_gene, updown, phospho)$Protein_Intersection,
TF_proteins)
ST_proteins_STRINGid = string_db$map(as.data.frame(proteins), "proteins", takeFirst = TRUE)
doubID = which(duplicated(ST_proteins_STRINGid$ST_proteins))
if(length(doubID)>0)
{STRINGIDs = ST_proteins_STRINGid[-doubID,]
}else{
STRINGIDs = na.omit(ST_proteins_STRINGid)}
if(dim(STRINGIDs)[1]>0)
{message("Consensus graph for protein time point ", tp_prot, " and transcript/gene time point ", tp_gene,
" was generated.\n")
ST_net = SteinerTree_cons(STRINGIDs$STRING_id,
PPI_graph, run_times)
###
ST_netnames = V(ST_net)$name
ind_name = which(ST_netnames %in% STRINGIDs$STRING_id)
ST_netnames[ind_name] = STRINGIDs$proteins[na.omit(match(ST_netnames, STRINGIDs$STRING_id))]
temp_STR = as.data.frame(ST_netnames[-ind_name])
colnames(temp_STR) = "STRING_id"
ST_netnames[-ind_name] =
string_db$add_proteins_description(temp_STR)$preferred_name
V(ST_net)$name = ST_netnames
V(ST_net)$color[which(V(ST_net)$name %in% TF_proteins)] = "lightblue"
###
V(ST_net)$label.cex = 1
plot(ST_net, main = paste("Steiner tree of phosphoprotein time\n ",
tp_prot, " and transcript time ", tp_gene, sep = ""))
legend(x = 0, y = -1.2 , legend = c("consensus proteins",
"steiner node proteins", "consensus TFs"),
fill = c("red", "yellow", "lightblue"), cex = 0.7)
message("Steiner tree of graph phosphoprotein time point",
tp_prot, " and transcript time point ", tp_gene," was build.\n")
###
ST_TFs = TF_proteins
ST_targets = getGenesIntersection(data_omics, tp_prot, tp_gene, updown, phospho)$Genes_Intersection
ST_TFTG = list()
for(k in 1: length(ST_TFs))
{ST_TFTG[[k]] = as.character(data_omics[[3]][[2]][which(as.character(data_omics[[3]][[2]][,1]) == ST_TFs[k]),2])
ST_TFTG[[k]] = ST_TFTG[[k]][which(ST_TFTG[[k]] %in% ST_targets)]
}
names(ST_TFTG) = ST_TFs
###
ST_net_targets = genfullConsensusGraph(ST_net, ST_TFTG)
V(ST_net_targets)$label.cex = 0.6
plot.igraph(ST_net_targets, main = paste("Consensus graph phosphoprotein time\n ",
tp_prot, " and transcript time ", tp_gene,
sep = ""), vertex.size = 18)
if("yellow" %in% V(ST_net_targets)$color)
{legend(x = 0, y = -1.2 , legend = c("consensus proteins",
"steiner node proteins", "consensus TFs", "consensus target genes"),
fill = c("red", "yellow", "lightblue", "green"), cex = 0.7)
}else{
legend(x = 0, y = -1.2 , legend = c("consensus proteins",
"consensus TFs", "consensus target genes"),
fill = c("red", "lightblue", "green"), cex = 0.7)
}
ST_net_targets = addFeedbackLoops(ST_net_targets)
consensus_graph = ST_net_targets
}else{
consensus_graph[[tps]] = NA
message("Not enough intersecting molecules to generate
a consensus graph for time point ", same_tps[tps], "\n")
}
}
return(consensus_graph)
}
#' Add Consensus Graph information.
#'
#' Adds phosphoprotein information based on phosphoprotein data table and
#' redraws Consensus Graph edges
#'
#' @param data_omics OmicsData object.
#' @param consensusGraph result from static analysis: consensus graph generated
#' by staticConsensusNet function.
#' @param phosphotab dataframe with phosphoprotein information annotated in
#' columns 'Gene.names', 'Amino acid', 'Position' (of phosphosite).
#' @return graph of igraph class containing complemented consensus graph
#' information
#' @keywords manip
#' @export
#' @examples
#' \dontrun{
#' data(OmicsExampleData)
#' data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),
#' tp_genes = c(1, 4, 8, 13, 18, 24), OmicsExampleData,
#' PWdatabase = c("biocarta", "kegg", "nci", "reactome"),
#' TFtargetdatabase = c("userspec"))
#' data_omics = readPhosphodata(data_omics,
#' phosphoreg = system.file("extdata", "phospho_reg_table.txt",
#' package = "pwOmics"))
#' data_omics = readTFdata(data_omics,
#' TF_target_path = system.file("extdata", "TF_targets.txt",
#' package = "pwOmics"))
#' data_omics_plus = readPWdata(data_omics,
#' loadgenelists = system.file("extdata/Genelists", package = "pwOmics"))
#'
#' data_omics_plus = identifyPR(data_omics_plus)
#' setwd(system.file("extdata/Genelists", package = "pwOmics"))
#' data_omics = identifyPWs(data_omics_plus)
#' data_omics = identifyTFs(data_omics)
#' data_omics = identifyRsofTFs(data_omics,
#' noTFs_inPW = 1, order_neighbors = 10)
#' data_omics = identifyPWTFTGs(data_omics)
#' statConsNet = staticConsensusNet(data_omics)
#' }
infoConsensusGraph <- function(data_omics, consensusGraph, phosphotab)
{
if(length(consensusGraph[[1]]) == 1)
{consensusGraphs = list(consensusGraph)
temp = 1
}else{
consensusGraphs = consensusGraph
temp = 0
}
for(k in 1: length(consensusGraphs))
{ p_names_graph = V(consensusGraphs[[k]])$name[which(V(consensusGraphs[[k]])$color == "red")]
p_newnames_graph = paste(phosphotab$Gene.names[match(p_names_graph, phosphotab$Gene.names)], "_",
phosphotab$Amino.acid[match(p_names_graph, phosphotab$Gene.names)],
phosphotab$Position[match(p_names_graph, phosphotab$Gene.names)],
sep = "")
V(consensusGraphs[[k]])$name[which(V(consensusGraphs[[k]])$color == "red")] = p_newnames_graph
}
for(j in 1: length(consensusGraphs))
{
ind_green = which(V(consensusGraphs[[j]])$color == "green")
E(consensusGraphs[[j]])$lty = 1
E(consensusGraphs[[j]])[from(ind_green)]$lty = 3
}
if(temp==1)
{ consensusGraphs = consensusGraphs[[1]]
temp = 0}
return(consensusGraphs)
}
#' Generate STRING PPI graph.
#'
#' Generates connected graph with undirected edges from STRING PPI-database.
#'
#' @param string_db STRING_db object generated by getConsensusSTRINGIDs
#' function.
#' @return igraph object connected graph from STRING PPI database.
#'
#' @keywords manip
getSTRING_graph <- function(string_db){
string_homo_new = string_db$load()
conn_intgraph = decompose.graph(string_homo_new)[[1]]
graph_STRING = conn_intgraph
return(graph_STRING)
}
#' Add feedback loops from target genes to proteins/TFs if present.
#'
#' @param ST_net_targets full consensus graph.
#' @return igraph object with feedback loops added.
#'
#' @keywords manip
addFeedbackLoops <- function(ST_net_targets){
prot_nodes = V(ST_net_targets)$name[which(V(ST_net_targets)$color == "red" |
V(ST_net_targets)$color == "yellow" |
V(ST_net_targets)$color == "lightblue")]
gene_nodes =
V(ST_net_targets)$name[which(V(ST_net_targets)$color == "green")]
for(h in 1: length(prot_nodes))
{ feedback_ind = vector()
if(prot_nodes[h] %in% gene_nodes)
{
feedback_ind = which(V(ST_net_targets)$name == prot_nodes[h])
ST_net_targets[feedback_ind[1],feedback_ind[2] ] = 1
}
}
return(ST_net_targets)
}
#' Combine SteinerNet with bipartite graph to get full consensus network.
#'
#' @param ST_net steiner tree graph generated by SteinerTree_cons function.
#' @param ST_TFTG steiner tree graph extended with consensus target genes and
#' the edges between TFs and target genes.
#' @return igraph object of network comprising steiner tree graph and
#' TF - target gene interactions.
#'
#' @keywords manip
genfullConsensusGraph <- function(ST_net, ST_TFTG){
ST_net_targets = ST_net
match_vec = which(names(ST_TFTG) %in% V(ST_net)$name)
for(s in match_vec)
{
if(s>1)
{targets_in_graph = V(ST_net_targets)$name[which(V(ST_net_targets)$color == "green")]
targets_to_add = unique(ST_TFTG[[s]])[which(!unique(ST_TFTG[[s]]) %in% targets_in_graph)]
}else{
targets_to_add = unique(ST_TFTG[[s]])
}
temp = ST_net_targets
ST_net_targets = ST_net_targets + targets_to_add
len_targets = length(targets_to_add)
if(len_targets >=1)
{V(ST_net_targets)$color[(length(V(temp))+1):(length(V(temp)) + len_targets)] = "green"}
ind = which(V(ST_net_targets)$name == names(ST_TFTG[s]) &
V(ST_net_targets)$color == "lightblue")
ind_green = which(V(ST_net_targets)$color == "green" &
V(ST_net_targets)$name %in% unique(ST_TFTG[[s]]) )
if(length(ind)>0 & length(ind_green)>0)
{ST_net_targets = add.edges(ST_net_targets, rbind(ind_green, ind))}
}
return(ST_net_targets)
}
#' Get TF-target gene information for the consensus graph.
#'
#' @param data_omics OmicsData object.
#' @param tps integer specifying current timepoint under consideration.
#' @param updown boolean value; TRUE in case up- and downregulation should be
#' checked individually for intersection. Type of checking is defined with
#' parameter 'phospho'.
#' @param phospho boolean value; TRUE in case up- and downregulation should be
#' checked based on provided downstream phosphoprotein influence from
#' identifyPR function; FALSE in case up- and downregulation should be checked
#' for without phosphoprotein database knowledge. Default is TRUE.
#' @return list of transcription factor target gene interactions.
#'
#' @keywords manip
getbipartitegraphInfo <- function(data_omics, tps, updown = FALSE, phospho = TRUE){
same_tps = data_omics[[1]][[1]][[1]][[1]][which(data_omics[[1]][[1]][[1]][[1]]
%in% data_omics[[1]][[1]][[1]][[2]])]
ST_TFs =
getTFIntersection(data_omics, same_tps[tps], same_tps[tps], updown, phospho)$TF_Intersection
ST_targets =
getGenesIntersection(data_omics, same_tps[tps], same_tps[tps], updown, phospho)$Genes_Intersection
ST_TFTG = list()
for(k in 1: length(ST_TFs))
{ST_TFTG[[k]] = as.character(data_omics[[3]][[2]][which(as.character
(data_omics[[3]][[2]][,1]) == ST_TFs[k]),2])
ST_TFTG[[k]] = ST_TFTG[[k]][which(ST_TFTG[[k]] %in% ST_targets)]
}
names(ST_TFTG) = ST_TFs
return(ST_TFTG)
}
#' Map alias names to STRING IDs of consensus graph.
#'
#' @param data_omics OmicsData object.
#' @param ST_net steiner tree graph generated by SteinerTree_cons function.
#' @param updown boolean value; TRUE in case up- and downregulation should be
#' checked individually for intersection. Type of checking is defined with
#' parameter 'phospho'.
#' @param phospho boolean value; TRUE in case up- and downregulation should be
#' checked based on provided downstream phosphoprotein influence from
#' identifyPR function; FALSE in case up- and downregulation should be checked
#' for without phosphoprotein database knowledge. Default is TRUE.
#' @param consSTRINGIDs first element of list generated by getConsensusSTRINGIDs
#' function; a data.frame including the proteins to be considered as terminal
#' nodes in Steiner tree with colnames ST_proteins and the corresponding STRING
#' IDs in column 'STRING_id'.
#' @param tps integer specifying current timepoint under consideration.
#' @param string_db second element of list generated by getConsensusSTRINGIDs
#' function; species table (for human) of STRING database.
#' @return igraph object with alias name annotation.
#'
#' @keywords manip
getAliasfromSTRINGIDs <- function(data_omics, ST_net, updown = FALSE, phospho = TRUE,
consSTRINGIDs, tps, string_db){
same_tps = data_omics[[1]][[1]][[1]][[1]][which(data_omics[[1]][[1]][[1]][[1]]
%in% data_omics[[1]][[1]][[1]][[2]])]
ST_netnames = V(ST_net)$name
ind_name = which(ST_netnames %in% consSTRINGIDs$STRING_id)
ST_netnames[ind_name] = consSTRINGIDs$ST_proteins[na.omit(match(ST_netnames,
consSTRINGIDs$STRING_id))]
temp_STR = as.data.frame(ST_netnames[-ind_name])
colnames(temp_STR) = "STRING_id"
ST_netnames[-ind_name] =
string_db$add_proteins_description(temp_STR)$preferred_name
V(ST_net)$name = ST_netnames
TF_proteins =
getTFIntersection(data_omics, same_tps[tps], same_tps[tps], updown, phospho)$TF_Intersection
V(ST_net)$color[which(V(ST_net)$name %in% TF_proteins)] = "lightblue"
return(ST_net)
}
#' Get consensus graph in STRING IDs.
#'
#' @param data_omics OmicsData object.
#' @param tps integer specifying current timepoint under consideration.
#' @param string_db STRING_db object.
#' @param updown boolean value; TRUE in case up- and downregulation should be
#' checked individually for intersection. Type of checking is defined with
#' parameter 'phospho'.
#' @param phospho boolean value; TRUE in case up- and downregulation should be
#' checked based on provided downstream phosphoprotein influence from
#' identifyPR function; FALSE in case up- and downregulation should be checked
#' for without phosphoprotein database knowledge. Default is TRUE.
#' @return igraph object consensus graph with STRING IDs (only including
#' proteins and transcription factors).
#'
#' @keywords manip
getConsensusSTRINGIDs <- function(data_omics, tps, string_db, updown = FALSE, phospho = TRUE){
same_tps = data_omics[[1]][[1]][[1]][[1]][which(data_omics[[1]][[1]][[1]][[1]]
%in% data_omics[[1]][[1]][[1]][[2]])]
ST_proteins =
as.character(getProteinIntersection(data_omics, same_tps[tps], same_tps[tps], updown, phospho)$Protein_Intersection)
ST_proteins = unique(c(ST_proteins,
getTFIntersection(data_omics, same_tps[tps], same_tps[tps], updown, phospho)$TF_Intersection))
ST_proteins_STRINGid = string_db$map(as.data.frame(ST_proteins),
"ST_proteins", takeFirst = TRUE)
doubID = which(duplicated(ST_proteins_STRINGid$ST_proteins))
if(length(doubID)>0)
{consSTRINGIDs = ST_proteins_STRINGid[-doubID,]
}else{
consSTRINGIDs = na.omit(ST_proteins_STRINGid)}
return(consSTRINGIDs)
}
#' Steiner tree algorithm.
#'
#' Use this function to get the Steiner tree based on the STRING protein-protein
#' interaction database.
#'
#' @param terminal_nodes character vector of final nodes used for generation
#' of Steiner tree.
#' @param PPI_graph igraph object; graph should be connected and have
#' undirected edges.
#' @param run_times integer specifying number of times to run SP Steiner tree
#' algorithm to find minimal graph.
#' @return igraph object including Steiner tree.
#'
#' @keywords manip
SteinerTree_cons <- function(terminal_nodes, PPI_graph, run_times) {
color = NULL
terminal_nodes = na.omit(terminal_nodes)
V(PPI_graph)$color = "yellow"
V(PPI_graph)[terminal_nodes]$color = "red"
terminals = V(PPI_graph)[color == "red"]
steinertmin = vector()
steinertrees = list()
for(runs in 1: run_times)
{edges = c()
prob = sample(1:length(terminals), 1, replace = FALSE)
subtree = terminals$name[[prob]]
nsubtree = setdiff(terminals$name, subtree)
tparam = 1
while(tparam <= length(terminals))
{
paths = get.all.shortest.paths(PPI_graph,subtree, nsubtree)
if(length(paths$res)>1)
{
paths_length = sapply(paths$res, length)
sp = paths$res[which(paths_length == min(paths_length))][[1]]
subtree = igraph::union(subtree, V(PPI_graph)$name[sp])
nsubtree = setdiff(nsubtree, V(PPI_graph)$name[sp])
}else{
subtree = subtree
nsubtree = nsubtree
}
tparam = tparam+1
}
steinert = minimum.spanning.tree(induced.subgraph(PPI_graph, subtree))
for(i in length(which(V(steinert)$color == "yellow"))+1)
{ degr = degree(steinert, v = V(steinert), mode = c("all"))
todel = names(which(degr == 1))
todel = todel[which(!todel %in% terminals$name)]
if(length(todel) > 0)
{steinert = delete.vertices(steinert, todel)}
}
steinertrees[[runs]] = steinert
steinertmin[runs] = length(V(steinert)$name)
}
return(steinertrees[[which(steinertmin == min(steinertmin))[1]]])
}
#' Dynamic analysis.
#'
#' Generates continous data for dynamic analysis of protein, TF and gene data
#' via smoothing splines. 50 time points are generated this way.
#' The following nodes are considered:
#' Nodes which are part of the static consensus graphs from corresponding time
#' points of the two different measurement types. In case a node is not
#' significantly changed at a certain point in time its FC is assumed to remain
#' constant at this time point.
#' Calculation of the consensus-based dynamic net parameters are based on the ebdbNet
#' R package [1]. The number of time points generated via smoothing splines (50)
#' is based on their results for median AUCs of ROC curves.
#' The number of forward time units a node is assumed to influence other nodes
#' can be specified via the laghankel parameter. The cutoff determining the
#' percent of total variance explained by the singular values generated by
#' singular value decomposition (SVD) of the block-Hankel matrix H in order to
#' specify the hidden state dimension K (for further details see [1]).
#'
#' @references 1. A. Rau, F. Jaffrezic, J.-L. Foulley, R. W. Doerge (2010).
#' An empirical Bayesian method for estimating biological networks from temporal
#' microarray data. Statistical Applications in Genetics and Molecular Biology,
#' vol. 9, iss. 1, article 9.
#'
#' @param data_omics OmicsData object.
#' @param consensusGraphs result from static analysis: consensus graph generated
#' by staticConsensusNet function.
#' @param laghankel integer specifying the maximum relevant time lag to be used
#' in constructing the block-Hankel matrix.
#' @param cutoffhankel cutoff to determine desired percent of total variance
#' explained; default = 0.9 as in [1].
#' @param conv.1 value of convergence criterion 1; default value is 0.15
#' (for further details see [1]).
#' @param conv.2 value of convergence criterion 2; default value is 0.05
#' (for further details see [1]).
#' @param conv.3 value of convergence criterion 3; default value is 0.05
#' (for further details see [1]).
#' @param verbose boolean value, verbose output TRUE or FALSE
#' @param max.iter maximum overall iterations; default value is 100
#' (for further details see [1]).
#' @param max.subiter maximum iterations for hyperparameter updates;
#' default value is 200 (for further details see [1]).
#' @return list of 2 elements:
#' 1) output parameters of dynamic network inference with ebdbNet package
#' 2) splines data generated.
#' @keywords manip
#' @export
#' @examples
#' \dontrun{
#' data(OmicsExampleData)
#' data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),
#' tp_genes = c(1, 4, 8, 13, 18, 24), OmicsExampleData,
#' PWdatabase = c("biocarta", "kegg", "nci", "reactome"),
#' TFtargetdatabase = c("userspec"))
#' data_omics = readPhosphodata(data_omics,
#' phosphoreg = system.file("extdata", "phospho_reg_table.txt",
#' package = "pwOmics"))
#' data_omics = readTFdata(data_omics,
#' TF_target_path = system.file("extdata", "TF_targets.txt",
#' package = "pwOmics"))
#' data_omics_plus = readPWdata(data_omics,
#' loadgenelists = system.file("extdata/Genelists", package = "pwOmics"))
#'
#' data_omics_plus = identifyPR(data_omics_plus)
#' setwd(system.file("extdata/Genelists", package = "pwOmics"))
#' data_omics = identifyPWs(data_omics_plus)
#' data_omics = identifyTFs(data_omics)
#' data_omics = identifyRsofTFs(data_omics,
#' noTFs_inPW = 1, order_neighbors = 10)
#' data_omics = identifyPWTFTGs(data_omics)
#' statConsNet = staticConsensusNet(data_omics)
#' dynConsNet = consDynamicNet(data_omics, statConsNet)
#' }
consDynamicNet <- function(data_omics, consensusGraphs, laghankel = 3,
cutoffhankel = 0.9, conv.1 = 0.15,
conv.2 = 0.05,
conv.3 = 0.05, verbose = TRUE, max.iter = 100,
max.subiter = 200){
requireNamespace("ebdbNet", quietly = TRUE)
requireNamespace("longitudinal", quietly = TRUE)
as.longitudinal = dataFormat = hankel = ebdbn = NULL
if(class(data_omics) != "OmicsData")
{stop("Parameter 'data_omics' is not an OmicsData object.")}
if(TRUE %in% !(names(consensusGraphs) %in%
as.character(data_omics[[1]][[1]][[1]][[1]]) &
names(consensusGraphs) %in%
as.character(data_omics[[1]][[1]][[1]][[2]])) )
{stop("ConsensusGraphs do not match OmicsData object.")}
prot_nodes = vector()
gene_nodes = vector()
for(j in 1: length(consensusGraphs))
{ prot_nodes = c(prot_nodes,
V(consensusGraphs[[j]])$name[which(V(consensusGraphs[[j]])$color == "red" |
V(consensusGraphs[[j]])$color == "yellow" |
V(consensusGraphs[[j]])$color == "lightblue")])
gene_nodes = c(gene_nodes,
V(consensusGraphs[[j]])$name[which(V(consensusGraphs[[j]])$color == "green")])
}
spl_prot = getFCsplines(data_omics, unique(prot_nodes), "proteins")
spl_genes = getFCsplines(data_omics, unique(gene_nodes), "genes")
mat_splines_prot = predictFCvals(data_omics, nopredpoints = 50, spl_prot,
"Protein splines")
mat_splines_genes = predictFCvals(data_omics, nopredpoints = 50, spl_genes,
"Gene splines")
timevals = mat_splines_prot[[2]]
rownames(mat_splines_prot[[1]]) = paste(rownames(mat_splines_prot[[1]]),
"_p", sep = "")
rownames(mat_splines_genes[[1]]) = paste(rownames(mat_splines_genes[[1]]),
"_g", sep = "")
mat_splines = rbind(mat_splines_prot[[1]], mat_splines_genes[[1]])
ts_data = ts(t(mat_splines), start = 0, end = max(timevals),
frequency = 50/max(timevals))
ts_data = as.longitudinal(ts_data)
ts_data = dataFormat(ts_data)
K_hankel <- hankel(ts_data, laghankel, cutoffhankel)$dim
dynConsensusNet = ebdbn(ts_data, K_hankel, input = "feedback", conv.1,
conv.2, conv.3, verbose, max.iter, max.subiter)
return(list(dynConsensusNet, mat_splines))
}
#' Prediction of continous data points via smoothing splines.
#'
#' @param data_omics OmicsData object.
#' @param nopredpoints integer number; how many timpoints should be predicted?
#' @param splineslist list of protein or gene nodes for which splines were
#' generated: output of getFCsplines function.
#' @param title character vector specifying name of title.
#' @return list of splines matrix values and calculated times.
#'
#' @keywords manip
predictFCvals <- function(data_omics, nopredpoints, splineslist, title) {
uni_timepoints = BiocGenerics::union(data_omics[[1]][[1]][[1]][[1]],
data_omics[[1]][[1]][[1]][[2]])
timevals = seq(0, max(uni_timepoints), length.out = nopredpoints)
splineslist = splineslist[which(!is.na(splineslist))]
splines_mat = matrix(ncol = nopredpoints, nrow = length(splineslist))
rownames(splines_mat) = names(splineslist)
colnames(splines_mat) = as.character(round(timevals, digits = 2))
for(k in 1: length(which(!is.na(splineslist))))
{ splines_mat[k,1:50] = predict(splineslist[k][[1]], timevals)$y}
return(list(splines_mat, timevals))
}
#' Get fold change splines.
#'
#' Calculate the splines used for the dynamic analysis.
#'
#' @param data_omics OmicsData object.
#' @param nodes character vector of nodes the fold change splines should be
#' calculated for.
#' @param nodetype character indicating to calculate splines for "proteins" or
#' "genes".
#' @return splines values used in dynamic analysis.
#'
#' @keywords manip
getFCsplines <- function(data_omics, nodes, nodetype) {
if(length(nodes)<1)
{message("Warning: Node number equals 0, no splines can be calculated.\n")
return(NA)}
if(nodetype == "proteins")
{timepoints = data_omics[[1]][[1]][[1]][[1]]
used_list = 1
}else if(nodetype == "genes"){
timepoints = data_omics[[1]][[1]][[1]][[2]]
used_list = 2
}
uni_timepoints = BiocGenerics::union(data_omics[[1]][[1]][[1]][[1]],
data_omics[[1]][[1]][[1]][[2]])
fc = list()
for(s in 1: length(nodes))
{
fc[[s]] = vector()
fc[[s]][1] = 0
for(tp in uni_timepoints)
{
if(tp %in% timepoints)
{ ind_current_tp = gsub("tp", "",
names(data_omics[[1]][[2]][[used_list]]))
if(nodes[s] %in%
data_omics[[1]][[2]][[used_list]][[which(tp == ind_current_tp)]][,1])
{fc[[s]][which(tp == uni_timepoints)+1] =
data_omics[[1]][[2]][[used_list]][[which(tp == ind_current_tp)]][which(data_omics[[1]][[2]][[used_list]][[which(tp == ind_current_tp)]][,1] == nodes[s]),2]
}else{
fc[[s]][which(tp == uni_timepoints)+1] = fc[[s]][which(tp == uni_timepoints)]
}
}else{
fc[[s]][which(tp == uni_timepoints)+1] = fc[[s]][which(tp == uni_timepoints)]
}
}
}
names(fc) = nodes
spl = list()
for(k in 1: length(fc))
{
if(!all(fc[[k]] == 0))
{spl[[k]] = smooth.spline(c(0,uni_timepoints), fc[[k]], df =4)
}else{
spl[[k]] = NA
}
}
names(spl) = nodes
return(spl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.