#' @title Sick tree error calculator
#' @description Calculate errors in automated detection of declining trees using visual inspection data as reference.
#' @param r_pred_dir A directory where binary .tifs predicting presence as 1 and absence as 0 can be found for multiple tiles
#' @param tile path to a txtfile with the names of the tile you want to execute
#' If you want to run all the images of r_pred_dir, leave it empty. Default is 'ALL'
#' @param prefix Prefix that you want to add to the output file. EX: NorthPortugal NorthPortugal-> -sicktree_performance_dfs.rdsdata
#' @param vuln_classes A list of the classes you want to model.
#' The list can contain one or more vectors. Each vector represents a seperate vegetation class and response variable for the model
#' and the vector elements are synonyms used to describe that class.
#' The fist place in each vector will be used in the output name used to store the calibrated model, so it should not contain spaces.
#' The other places should appear as attributes in the field 'field_name' of pnts.
#' @param training_pnt_filename Full path to the SpatialPointsDataFrame of which one field contains the vuln_classes
#' @param radius The radius within which a presence point must be found for it to be considered 'correct'. Default is True
#' @param minthresh The minimum cut-off number you want to use, Default = 0
#' @param maxthresh The maximum cut-off number you want to use, Default = 1
#' @param stepthresh The step used to create de sequences of threshold from the minthresh to the max thresh. Default = 0.05
#' @param abs_samp How many 'absence' pixels should be randomly selected from each tile to evaluate the absences? Default is 100.
#' @param field_name Character. The field in AOI.filename that contains the vuln_classes
#' @param parallel Should the code be run in parallel using the doParallel package? Default is FALSE.
#' @param nWorkers If running the ocde in parallel, how many workers should be used? Default is 4.
#' @param data_outp_dir The folder to save the sampled data to. No data is saved is data_outp_dir is NULL. Default is NULL.
#' @return A data frame with commission and ommission errors and sample sizes of presence and absence
#' @examples \dontrun{
# tt <- sick_tree_errors(r_pred_dir = '/HDD/trash/test/result/',
# tile = '/HDD/trash/test/AT_06.txt',
# prefix = 'AT_06-2-',
# vuln_classes = list(c('Pb')),
# training_pnt_filename = '/HDD/visual_interpretation/visual_interpretation_ADS/AT_06.shp',
# field_name = 'type',
# abs_samp = 2,
# minthresh = 0,
# maxthresh = 1,
# stepthresh = 0.05,
# parallel = F,
# nWorkers = 4,
# data_outp_dir = '/HDD/trash/test/')
#' }
#' @export
Sick_tree_errors <- function(r_pred_dir, tile = 'ALL', prefix, vuln_classes, training_pnt_filename,
radius = 2, field_name, abs_samp = 100, minthresh = 0, maxthresh = 1, stepthresh = 0.05,
parallel = F, nWorkers = 4, data_outp_dir = NULL){
tt<-data.frame()
pnts = raster::shapefile(training_pnt_filename)
if(is.factor( pnts@data[[field_name]])){
pnts@data[[field_name]] <- droplevels(pnts@data[[field_name]])
}
#if you want to run all the tiles in a directory, harvest the available tilenames
if (tile[1] == 'ALL'){
#harvest all the tif files in the directories holding covariate/predictor images
all_tifs <- list.files(r_pred_dir, recursive = F, full.names = T)
all_tifs <- all_tifs[grepl('.tif',all_tifs)]
#excluded the tif files in the unprojected folder
all_tifs <- all_tifs[!grepl('raw', all_tifs)]
all_tifs <- all_tifs[!grepl('.aux.xml', all_tifs)]
tile <- unlist(gsub(pattern = "\\.tif$", "", basename(all_tifs)))
tile <- unique(tile)
cat(length(tile),' tiles are considered\n')
}
else{
#treat the txt file if needed
tile = read.table(tile)
tile = unlist(tile$V1)
tile = as.vector(tile)
all_tifs <- list.files(r_pred_dir, recursive = F, full.names = T, pattern = paste(tile, collapse = '|'))
cat(length(tile),' tiles are considered\n')
}
tile_counter <- 0
# a list to hold the outputs
calval_dfs <- list()
out <- Par(nWorkers, data_outp_dir, "sicktreeerrors", parallel)
`%op%` <- unlist(out[[1]])
cl <- out[[2]]
stime <- system.time({
calval_dfs <- foreach::foreach(thresh = seq(minthresh, maxthresh, stepthresh), .combine = rbind.data.frame, .inorder=F, .multicombine=F,.errorhandling='remove') %op% {
#an empty data frame to hold the data extracted for this tile
tile_dat <- data.frame()
for (tif in all_tifs){
tile_i = tif
## you should only have one output tif per tile
#check if you have any points in this tile
#crop the calval to this tile
pred_rs <- tile_i
pnts_tile <- raster::crop(pnts, raster::raster(pred_rs))
#only proceed if you have training points in this tile
if (!is.null(pnts_tile)){
if (length(pnts_tile) >= 1 & any(pnts_tile@data$type == vuln_classes)){
#read the predicted layers for this tile
r_pred <- raster::raster(pred_rs)
r_pred <- r_pred > thresh
cat('Sampling data from ', basename(tile_i),'\n')
#reproject the trainig pnts if necessary
if (raster::projection(pnts) != raster::projection(r_pred)){
pnts <- sp::spTransform(pnts, sp::CRS(raster::projection(r_pred)))
}
# extract the data for this tile for each class
for (j in 1:length(vuln_classes)){
pres_train <- NULL
class. <- vuln_classes[[j]]
cat('sampling data for class ',class.[1],'\n')
if(length(class.) > 1){
cat('which also includes ',class.[-1],'\n')
}
# the sampling for reference points:
pres_vis_tile <- pnts_tile[is.element(pnts_tile@data[[field_name]] , class.),]
cat('For the class', class.[1],' this tile has ',length(pres_vis_tile),' presence points falling in it.\n')
#get the predicted presence/absence for the reference presence points
#extractions are done by counting the presences in the image within a certain radius of the point location
if (length(pres_vis_tile) > 0){
pres_dat <- data.frame(raster::extract(r_pred, pres_vis_tile, buffer = radius, fun = sum), unlist(as.data.frame(pres_vis_tile[ , field_name])[[1]]))
colnames(pres_dat) <- c('pred','point_ID')
}else{
pres_dat <- data.frame()
}
#pres_dat[['obs']] <- 1
#randomly sample pseudo-absence locations
abs_loc <- dismo::randomPoints( r_pred, n = abs_samp, p = pres_vis_tile, warn=0 )
#exclude pseude-absences that fall too close to presence locations
dist_abs2pres <- sp::spDists(abs_loc, sp::coordinates(pnts_tile))
mindist_abs2pres <- apply(dist_abs2pres, 1, min)
abs_loc <- abs_loc[mindist_abs2pres > 2*radius,]
#extract predicted values at the pseudo-absences
#extractions are done by counting the presences in the image within a certain radius of the point location
abs_dat <- data.frame(raster::extract(r_pred, abs_loc, buffer = radius, fun = sum),0)
abs_dat <- stats::na.omit(abs_dat)
colnames(abs_dat) <- c('pred','point_ID')
#abs_dat[['obs']] <- 0
if (nrow(abs_dat) == 0) {
stop('could not get valid background point values; is there a layer with only NA values?')
}
if (nrow(abs_dat) < abs_samp/100) {
stop('only got:', nrow(abs_dat), 'random background point values; is there a layer with many NA values?')
}
if (nrow(abs_dat) < abs_samp/10) {
warning('only got:', nrow(abs_dat), 'random background point values; Small exent? Or is there a layer with many NA values?')
}
#join presence and absence data
tile_dat_class <- rbind.data.frame(pres_dat, abs_dat)
tile_dat_class <- cbind.data.frame(vis = c(rep(1,nrow(pres_dat)),rep(0,nrow(abs_dat))),tile_dat_class)
#add the classname
tile_dat_class$class <- rep(class., nrow(tile_dat_class) )
#add the tilename
tile_dat_class$tile <- tile_i
#add the data for this class and tile, to the data for this tile
tile_dat <- rbind(tile_dat, tile_dat_class)
#require(dismo)
}
}
}
}
if(nrow(tile_dat>0)){
tile_dat['cutoff'] <- thresh
tile_dat
}
}
})[3]
cat("------------------------------------------\n")
#+++++++++++++++++++++++++++++++++++++++++++++++
# report performance statistics ----
#+++++++++++++++++++++++++++++++++++++++++++++++
if (parallel){
cat('using \n',foreach::getDoParWorkers(),' parallel workers,\n')
}else{
cat('processing sequentially on a single worker \n')
}
cat('Estimated performance for ',length(tile),' tiles in ',round(stime/60),' minutes\n')
#############################################
# close the cluster set up forparallel processing
if (parallel){
parallel::stopCluster(cl)
}
#+++++++++++++++++++++++++++++++++++++++++++++++
# save the extracted data ----
#+++++++++++++++++++++++++++++++++++++++++++++++
if (!is.null(data_outp_dir)){
data_file <- paste0(data_outp_dir, prefix,'-sicktree_performance_dfs.rdsdata')
saveRDS(calval_dfs, file = data_file)
cat('Wrote away ', data_file,'\n')
}
return(calval_dfs)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.