EnrichmentJaccard | R Documentation |
EnrichmentJaccard - using gsea list and LeadingEdgeIndexed result, compute pairwise jaccard index of leadingedge genes within celltypes. saves a heatmap of modules for each cell type in savpath if saveplot = TRUE. Returns a gsea result dataframe with all celltypes combined and module annotated with average within celltype jaccard index and leadingedge genes.
EnrichmentJaccard(
...,
gsealist,
indexedgenes,
saveplot = FALSE,
returnJaccardMtx = FALSE,
figpath
)
gsealist |
results from FgseaList or RunFgseaOnRankList (recommend first lapply filter(padj < 0.05 e.g.) ) |
indexedgenes |
results fro mLeadingEdgeIndexed |
saveplot |
if TRUE saves jaccard index heatmap to figpath |
figpath |
place to save figures, a file.path(). |
curated dataframe of gsea results with average jaccard index.
## Not run:
# read baseline enrichemnt results
g0 = FgseaList(rank.list.celltype = t1hvl_rank, pathways = btm, BPPARAM = pparam)
filtered_g0 = lapply(g0, function(x) x %>% filter(padj < 0.05))
compute jaccard index of leadingedge genes within celltype
li = LeadingEdgeIndexed(gsea.result.list = g0,padj.threshold = 0.05)
# enrichment jaccard
d = EnrichmentJaccard(gsealist = filtered_g0, indexedgenes = li,
saveplot = TRUE, figpath = figpath,
fontsize_row = 7.5, fontsize_col = 7.5)
d = d %>%
mutate(leadingEdge = map_chr(leadingEdge, toString)) %>%
select(celltype, av_jaccard,everything())
write_delim(d,file = paste0(datapath, 'g0jaccard.csv'),delim = ',')
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.