# fit spline only model function
fit_spline_rt <- function(data,
country,
pop,
pars_obs_dur_R = 365,
pars_obs_prob_hosp_multiplier = 1,
model = "SQUIRE",
n_mcmc = 10000,
replicates = 100,
rw_duration = 14,
hosp_beds = 10000000000,
icu_beds = 10000000000,
vacc_inputs = NULL,
mix_mat = squire::get_mixing_matrix("Iran"),
odriscoll = FALSE
) {
## -----------------------------------------------------------------------------
## Step 1 DATA CLEANING AND ORDERING
## -----------------------------------------------------------------------------
# order data
data <- data[order(data$date),]
data$date <- as.Date(data$date)
# and remove the rows with no data up to the first date that a death was reported
first_report <- which(data$deaths>0)[1]
missing <- which(data$deaths == 0 | is.na(data$deaths))
to_remove <- missing[missing<first_report]
if(length(to_remove) > 0) {
if(length(to_remove) == (nrow(data)-1)) {
data <- data[-head(to_remove,-1),]
} else {
data <- data[-to_remove,]
}
}
## -----------------------------------------------------------------------------
## Step 2a: PMCMC SETUP
## -----------------------------------------------------------------------------
# dat_0 is just the current date now
date_0 <- max(data$date)
# what is the date of first death
null_na <- function(x) {if(is.null(x)) {NA} else {x}}
min_death_date <- data$date[which(data$deaths>0)][1]
# We set the R0_change here to be 1 everywhere to effectively turn off mobility
R0_change <- rep(1, nrow(data))
date_R0_change <- data$date
R0_change <- R0_change[as.Date(date_R0_change) <= date_0]
date_R0_change <- date_R0_change[as.Date(date_R0_change) <= date_0]
# pmcmc args
n_particles <- 2 # we use the deterministic model now so this does nothing (makes your life quicker and easier too)
n_chains <- 1 # number of chains
start_adaptation <- max(2, round(n_mcmc/10)) # how long before adapting
# parallel call
suppressWarnings(future::plan(future::multiprocess()))
# Defualt parameter edges for pmcmc
R0_min <- 1.5
R0_max <- 10
last_start_date <- as.Date(null_na(min_death_date))-10
first_start_date <- as.Date(null_na(min_death_date))-55
start_date <- as.Date(null_na(min_death_date))-30
# These 4 parameters do nothign as setting R0_change to 1
Meff_min <- -2
Meff_max <- 2
Meff_pl_min <- 0
Meff_pl_max <- 1
Rt_shift_min <- 0
Rt_shift_max <- 0.001
Rt_shift_scale_min <- 0.1
Rt_shift_scale_max <- 10
## -----------------------------------------------------------------------------
## Step 2b: Sourcing suitable starting conditions
## -----------------------------------------------------------------------------
date_start <- data$date[which(cumsum(data$deaths)>10)[1]] - 30
R0_start <- 3
# These are the the initial conditions now loaded from our previous run.
R0_start <- min(max(R0_start, R0_min), R0_max)
date_start <- min(max(as.Date(start_date), as.Date(first_start_date)), as.Date(last_start_date))
# again these all do nothing
Meff_start <- min(max(0, Meff_min), Meff_max)
Meff_pl_start <- min(max(0.5, Meff_pl_min), Meff_pl_max)
Rt_shift_start <- min(max(0.0005, Rt_shift_min), Rt_shift_max)
Rt_shift_scale_start <- min(max(5, Rt_shift_scale_min), Rt_shift_scale_max)
# Our random walk parameters start after the Meff change
# Basically just set this suitably far back in the past
date_Meff_change <- date_start - 1
## -----------------------------------------------------------------------------
## Step 2c: Spline set up
## -----------------------------------------------------------------------------
last_shift_date <- as.Date(date_Meff_change) + 1
remaining_days <- as.Date(date_0) - last_shift_date - 14 # reporting delay in place
# how many spline pars do we need
Rt_rw_duration <- rw_duration # i.e. we fit with a 2 week duration for our random walks.
rw_needed <- as.numeric(ceiling(remaining_days/Rt_rw_duration))
# set up rw pars
pars_init_rw <- as.list(rep(0, rw_needed))
pars_min_rw <- as.list(rep(-5, rw_needed))
pars_max_rw <- as.list(rep(5, rw_needed))
pars_discrete_rw <- as.list(rep(FALSE, rw_needed))
names(pars_init_rw) <- names(pars_min_rw) <- names(pars_max_rw) <- names(pars_discrete_rw) <- paste0("Rt_rw_", seq_len(rw_needed))
## -----------------------------------------------------------------------------
## Step 2d: PMCMC parameter set up
## -----------------------------------------------------------------------------
# PMCMC Parameters
pars_init = list('start_date' = date_start,
'R0' = R0_start,
'Meff' = Meff_start,
'Meff_pl' = Meff_pl_start,
"Rt_shift" = 0,
"Rt_shift_scale" = Rt_shift_scale_start)
pars_min = list('start_date' = first_start_date,
'R0' = R0_min,
'Meff' = Meff_min,
'Meff_pl' = Meff_pl_min,
"Rt_shift" = Rt_shift_min,
"Rt_shift_scale" = Rt_shift_scale_min)
pars_max = list('start_date' = last_start_date,
'R0' = R0_max,
'Meff' = Meff_max,
'Meff_pl' = Meff_pl_max,
"Rt_shift" = Rt_shift_max,
"Rt_shift_scale" = Rt_shift_scale_max)
pars_discrete = list('start_date' = TRUE, 'R0' = FALSE, 'Meff' = FALSE,
'Meff_pl' = FALSE, "Rt_shift" = FALSE, "Rt_shift_scale" = FALSE)
pars_obs = list(phi_cases = 1, k_cases = 2, phi_death = 1, k_death = 2, exp_noise = 1e6,
dur_R = pars_obs_dur_R,
prob_hosp_multiplier = pars_obs_prob_hosp_multiplier)
# add in the spline list
pars_init <- append(pars_init, pars_init_rw)
pars_min <- append(pars_min, pars_min_rw)
pars_max <- append(pars_max, pars_max_rw)
pars_discrete <- append(pars_discrete, pars_discrete_rw)
# Covriance Matrix
proposal_kernel <- diag(length(names(pars_init))) * 0.3
rownames(proposal_kernel) <- colnames(proposal_kernel) <- names(pars_init)
proposal_kernel["start_date", "start_date"] <- 1.5
# MCMC Functions - Prior and Likelihood Calculation
logprior <- function(pars){
ret <- dunif(x = pars[["start_date"]], min = -55, max = -10, log = TRUE) +
dnorm(x = pars[["R0"]], mean = 3, sd = 0.25, log = TRUE) +
dnorm(x = pars[["Meff"]], mean = 0, sd = 1, log = TRUE) +
dunif(x = pars[["Meff_pl"]], min = 0, max = 1, log = TRUE) +
dnorm(x = pars[["Rt_shift"]], mean = 0, sd = 1, log = TRUE) +
dunif(x = pars[["Rt_shift_scale"]], min = 0.1, max = 10, log = TRUE)
# get rw spline parameters
if(any(grepl("Rt_rw", names(pars)))) {
Rt_rws <- pars[grepl("Rt_rw", names(pars))]
for (i in seq_along(Rt_rws)) {
ret <- ret + dnorm(x = Rt_rws[[i]], mean = 0, sd = 0.1, log = TRUE)
}
}
return(ret)
}
# Defaults for now for vaccines (not used atm)
strategy <- "HCW, Elderly and High-Risk"
available_doses_proportion <- 0.95
vaccine_uptake <- 0.8
vaccine_coverage_mat <- get_coverage_mat(
iso3c = "IRN",
pop = pop,
available_doses_proportion = available_doses_proportion,
strategy = strategy,
vaccine_uptake = vaccine_uptake
)
# mixing matrix - assume is same as country as whole
# mix_mat <- squire::get_mixing_matrix(country)
## -----------------------------------------------------------------------------
## Step 3: Run PMCMC
## -----------------------------------------------------------------------------
scaling_factor <- 1
# pars init for each ifr
pi <- readRDS("pars_init.rds")
if(odriscoll) {
if(pars_obs$dur_R >= 180) {
pi <- pi$optimistic_odriscoll
} else if ((pars_obs$dur_R > 80 && pars_obs$dur_R < 180)) {
pi <- pi$central_odriscoll
} else {
pi <- pi$worst_odriscoll
}
} else {
if(pars_obs$dur_R >= 180) {
pi <- pi$optimistic
} else if ((pars_obs$dur_R > 80 && pars_obs$dur_R < 180)) {
pi <- pi$central
} else {
pi <- pi$worst
}
}
pf <- pi[[province]]
pf$start_date <- as.Date(pf$start_date)
#pf$start_date <- as.Date(start_date)
pos_mat <- match(names(pars_init), names(pf))
pars_init[which(!is.na(pos_mat))] <- as.list(pf[na.omit(pos_mat)])
# grab old scaling factor
scaling_factor <- 1
if("scaling_factor" %in% names(pf)) {
scaling_factor <- as.numeric(pf$scaling_factor)
}
# use correct probs for osriscoll vs brazeau ifr
probs <- squire::default_probs()
if (odriscoll) {
# brazeau ifr
ifr <- (probs$prob_hosp * probs$prob_severe * probs$prob_severe_death_treatment) +
(probs$prob_hosp * (1-probs$prob_severe) * probs$prob_non_severe_death_treatment)
# from odriscoll paper
odriscoll_ifr <- c(0.003, 0.001, 0.001, 0.003, 0.006, 0.013,
0.024, 0.04, 0.075, 0.121, 0.207, 0.323, 0.456,
1.075, 1.674, 3.203, 8.292)/100
psdt <- (odriscoll_ifr/ifr) * probs$prob_severe_death_treatment
pnsdt <- (odriscoll_ifr/ifr) * probs$prob_non_severe_death_treatment
} else {
psdt <- probs$prob_severe_death_treatment
pnsdt <- probs$prob_non_severe_death_treatment
}
# grab old covariance matrix
# use the old covar matrix if available
if("covariance_matrix" %in% names(pf)) {
# old proposal kernel
proposal_kernel_proposed <- pf$covariance_matrix[[1]]
# check if it needs to be expanded
if(length(grep("Rt_rw", colnames(proposal_kernel_proposed))) == rw_needed) {
proposal_kernel <- proposal_kernel_proposed
} else if(length(grep("Rt_rw", colnames(proposal_kernel_proposed))) < rw_needed) {
add_similar_cr <- function(x) {
x <- cbind(rbind(x, 0), 0)
rw_num <- colnames(x)[nrow(x)-1]
new_rw <- paste0("Rt_rw_", as.numeric(gsub("(.*_)(\\d*)$", "\\2", rw_num)) + 1)
colnames(x)[ncol(x)] <- rownames(x)[nrow(x)] <- new_rw
x[nrow(x),] <- x[nrow(x) - 1,]
x[,ncol(x)] <- x[,ncol(x) - 1]
return(x)
}
# add as needed
for(i in seq_len(rw_needed - length(grep("Rt_rw", colnames(proposal_kernel_proposed))))) {
proposal_kernel_proposed <- add_similar_cr(proposal_kernel_proposed)
}
proposal_kernel <- proposal_kernel_proposed
} else {
# remove as needed
for(i in seq_len(length(grep("Rt_rw", colnames(proposal_kernel_proposed))) - rw_needed)) {
proposal_kernel_proposed <- proposal_kernel_proposed[-nrow(proposal_kernel_proposed),-ncol(proposal_kernel_proposed)]
}
proposal_kernel <- proposal_kernel_proposed
}
}
if (model == "SQUIRE") {
squire_model = squire:::deterministic_model()
# run the pmcmc
res <- pmcmc_iran(data = data,
gibbs_days = NULL,
gibbs_sampling = FALSE,
n_mcmc = n_mcmc,
log_prior = logprior,
n_particles = 1,
steps_per_day = 1,
log_likelihood = iran_log_likelihood,
reporting_fraction = 1,
squire_model = squire_model,
output_proposals = FALSE,
n_chains = n_chains,
pars_init = pars_init,
pars_min = pars_min,
pars_max = pars_max,
pars_discrete = pars_discrete,
pars_obs = pars_obs,
proposal_kernel = proposal_kernel,
population = pop,
baseline_contact_matrix = mix_mat,
R0_change = R0_change,
date_R0_change = date_R0_change,
Rt_args = squire:::Rt_args_list(
date_Meff_change = date_Meff_change,
scale_Meff_pl = TRUE,
Rt_shift_duration = 1,
Rt_rw_duration = Rt_rw_duration),
burnin = ceiling(n_mcmc/10),
seeding_cases = 5,
replicates = replicates,
required_acceptance_ratio = 0.20,
start_adaptation = start_adaptation,
baseline_hosp_bed_capacity = hosp_beds,
baseline_ICU_bed_capacity = icu_beds,
scaling_factor = scaling_factor,
dur_R = 365,
baseline_contact_matrix = mix_mat,
prob_severe_death_treatment = psdt,
prob_non_severe_death_treatment = pnsdt
)
} else if(model == "NIMUE") {
squire_model = nimue::nimue_deterministic_model(use_dde = TRUE)
# run the pmcmc
res <- pmcmc_iran(data = data,
gibbs_days = NULL,
gibbs_sampling = FALSE,
n_mcmc = n_mcmc,
log_prior = logprior,
n_particles = 1,
steps_per_day = 1,
log_likelihood = iran_log_likelihood,
reporting_fraction = 1,
squire_model = squire_model,
output_proposals = FALSE,
n_chains = n_chains,
pars_init = pars_init,
pars_min = pars_min,
pars_max = pars_max,
pars_discrete = pars_discrete,
pars_obs = pars_obs,
proposal_kernel = proposal_kernel,
population = pop,
baseline_contact_matrix = mix_mat,
R0_change = R0_change,
date_R0_change = date_R0_change,
Rt_args = squire:::Rt_args_list(
date_Meff_change = date_Meff_change,
scale_Meff_pl = TRUE,
Rt_shift_duration = 1,
Rt_rw_duration = Rt_rw_duration),
burnin = ceiling(n_mcmc/10),
seeding_cases = 5,
replicates = replicates,
required_acceptance_ratio = 0.20,
start_adaptation = start_adaptation,
baseline_hosp_bed_capacity = hosp_beds,
baseline_ICU_bed_capacity = icu_beds,
scaling_factor = scaling_factor,
dur_R = 365,
date_vaccine_change = vacc_inputs$date_vaccine_change,
max_vaccine = vacc_inputs$max_vaccine,
baseline_max_vaccine = 0,
date_vaccine_efficacy_infection_change = vacc_inputs$date_vaccine_change,
vaccine_efficacy_infection = vacc_inputs$vaccine_efficacy_infection,
baseline_vaccine_efficacy_infection = vacc_inputs$vaccine_efficacy_infection[[1]],
date_vaccine_efficacy_disease_change = vacc_inputs$date_vaccine_change,
vaccine_efficacy_disease = vacc_inputs$vaccine_efficacy_disease,
baseline_vaccine_efficacy_disease = vacc_inputs$vaccine_efficacy_disease[[1]],
rel_infectiousness_vaccinated = vacc_inputs$rel_infectiousness_vaccinated,
vaccine_coverage_mat = vaccine_coverage_mat,
dur_V = 550,
prob_severe_death_treatment = psdt,
prob_non_severe_death_treatment = pnsdt
)
}
## remove things so they don't atke up so much memory when you save them :)
# Add the prior
res$pmcmc_results$inputs$prior <- as.function(c(formals(logprior),
body(logprior)),
envir = new.env(parent = environment(stats::acf)))
# remove states to keep object memory save down
if("chains" %in% names(res$pmcmc_results)) {
for(i in seq_along(res$pmcmc_results$chains)) {
res$pmcmc_results$chains[[i]]$states <- NULL
res$pmcmc_results$chains[[i]]$covariance_matrix <- tail(res$pmcmc_results$chains$chain1$covariance_matrix,1)
}
} else {
res$pmcmc_results$states <- NULL
res$pmcmc_results$covariance_matrix <- tail(res$pmcmc_results$covariance_matrix, 1)
}
return(res)
}
iran_log_likelihood <- function(pars, data, squire_model, model_params, pars_obs, n_particles,
forecast_days = 0, return = "ll", Rt_args, interventions, ...) {
switch(return, full = {
save_particles <- TRUE
full_output <- TRUE
pf_return <- "sample"
}, ll = {
save_particles <- FALSE
forecast_days <- 0
full_output <- FALSE
pf_return <- "single"
}, {
stop("Unknown return type to calc_loglikelihood")
})
squire:::assert_in(c("R0", "start_date"), names(pars), message = "Must specify R0, start date to infer")
R0 <- pars[["R0"]]
start_date <- pars[["start_date"]]
squire:::assert_pos(R0)
squire:::assert_date(start_date)
R0_change <- interventions$R0_change
date_R0_change <- interventions$date_R0_change
date_contact_matrix_set_change <- interventions$date_contact_matrix_set_change
date_ICU_bed_capacity_change <- interventions$date_ICU_bed_capacity_change
date_hosp_bed_capacity_change <- interventions$date_hosp_bed_capacity_change
date_vaccine_change <- interventions$date_vaccine_change
date_vaccine_efficacy_infection_change <- interventions$date_vaccine_efficacy_infection_change
date_vaccine_efficacy_disease_change <- interventions$date_vaccine_efficacy_disease_change
if (is.null(date_R0_change)) {
tt_beta <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_R0_change,
change = R0_change, start_date = start_date, steps_per_day = round(1/model_params$dt),
starting_change = 1)
model_params$tt_beta <- tt_list$tt
R0_change <- tt_list$change
date_R0_change <- tt_list$dates
}
if (is.null(date_contact_matrix_set_change)) {
tt_contact_matrix <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_contact_matrix_set_change,
change = seq_along(interventions$contact_matrix_set)[-1],
start_date = start_date, steps_per_day = round(1/model_params$dt),
starting_change = 1)
model_params$tt_matrix <- tt_list$tt
model_params$mix_mat_set <- model_params$mix_mat_set[tt_list$change,
, ]
}
if (is.null(date_ICU_bed_capacity_change)) {
tt_ICU_beds <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_ICU_bed_capacity_change,
change = interventions$ICU_bed_capacity[-1], start_date = start_date,
steps_per_day = round(1/model_params$dt), starting_change = interventions$ICU_bed_capacity[1])
model_params$tt_ICU_beds <- tt_list$tt
model_params$ICU_beds <- tt_list$change
}
if (is.null(date_hosp_bed_capacity_change)) {
tt_hosp_beds <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_hosp_bed_capacity_change,
change = interventions$hosp_bed_capacity[-1], start_date = start_date,
steps_per_day = round(1/model_params$dt), starting_change = interventions$hosp_bed_capacity[1])
model_params$tt_hosp_beds <- tt_list$tt
model_params$hosp_beds <- tt_list$change
}
if (is.null(date_vaccine_change)) {
tt_vaccine <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_vaccine_change,
change = interventions$max_vaccine[-1], start_date = start_date,
steps_per_day = round(1/model_params$dt), starting_change = interventions$max_vaccine[1])
model_params$tt_vaccine <- tt_list$tt
model_params$max_vaccine <- tt_list$change
}
if (is.null(date_vaccine_efficacy_infection_change)) {
tt_vaccine_efficacy_infection <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_vaccine_efficacy_infection_change,
change = seq_along(interventions$vaccine_efficacy_infection)[-1],
start_date = start_date, steps_per_day = round(1/model_params$dt),
starting_change = 1)
model_params$tt_vaccine_efficacy_infection <- tt_list$tt
model_params$vaccine_efficacy_infection <- model_params$vaccine_efficacy_infection[tt_list$change,
, ]
}
if (is.null(date_vaccine_efficacy_disease_change)) {
tt_vaccine_efficacy_disease <- 0
}
else {
tt_list <- squire:::intervention_dates_for_odin(dates = date_vaccine_efficacy_disease_change,
change = seq_along(interventions$vaccine_efficacy_disease)[-1],
start_date = start_date, steps_per_day = round(1/model_params$dt),
starting_change = 1)
model_params$tt_vaccine_efficacy_disease <- tt_list$tt
model_params$prob_hosp <- model_params$prob_hosp[tt_list$change,
, ]
}
R0 <- squire:::evaluate_Rt_pmcmc(R0_change = R0_change, R0 = R0, date_R0_change = date_R0_change,
pars = pars, Rt_args = Rt_args)
beta_set <- squire:::beta_est(squire_model = squire_model, model_params = model_params,
R0 = R0)
model_params$beta_set <- beta_set
if (inherits(squire_model, "stochastic")) {
pf_result <- squire:::run_particle_filter(data = data, squire_model = squire_model,
model_params = model_params, model_start_date = start_date,
obs_params = pars_obs, n_particles = n_particles,
forecast_days = forecast_days, save_particles = save_particles,
full_output = full_output, return = pf_return)
}
else if (inherits(squire_model, "deterministic")) {
pf_result <- run_deterministic_comparison_iran(data = data,
squire_model = squire_model, model_params = model_params,
model_start_date = start_date, obs_params = pars_obs,
forecast_days = forecast_days, save_history = save_particles,
return = pf_return)
}
pf_result
}
ll_pois <- function (data, model, phi, k, exp_noise) {
mu <- phi * model + rexp(length(model), rate = exp_noise)
dpois(data, lambda = mu, log = TRUE)
}
run_deterministic_comparison_iran <- function(data, squire_model, model_params, model_start_date = "2020-02-02",
obs_params = list(
phi_cases = 0.1,
k_cases = 2,
phi_death = 1,
k_death = 2,
exp_noise = 1e+06
), forecast_days = 0, save_history = FALSE,
return = "ll") {
if (!(return %in% c("full", "ll", "sample", "single"))) {
stop("return argument must be full, ll, sample", "single")
}
if (as.Date(data$date[data$deaths > 0][1], "%Y-%m-%d") <
as.Date(model_start_date, "%Y-%m-%d")) {
stop("Model start date is later than data start date")
}
# set up as normal
data <- squire:::particle_filter_data(data = data, start_date = model_start_date,
steps_per_day = round(1/model_params$dt))
# correct for weekly deaths
data$day_end[nrow(data)] <- data$day_start[nrow(data)] + 7
data$step_end[nrow(data)] <- data$step_start[nrow(data)] + 7
# back to normal
model_params$tt_beta <- round(model_params$tt_beta * model_params$dt)
model_params$tt_contact_matrix <- round(model_params$tt_contact_matrix *
model_params$dt)
model_params$tt_hosp_beds <- round(model_params$tt_hosp_beds *
model_params$dt)
model_params$tt_ICU_beds <- round(model_params$tt_ICU_beds *
model_params$dt)
# steps as normal
steps <- c(0, data$day_end)
fore_steps <- seq(data$day_end[nrow(data)], length.out = forecast_days + 1L)
steps <- unique(c(steps, fore_steps))
if("dur_R" %in% names(obs_params)) {
if(obs_params$dur_R != 365) {
ch_dur_R <- as.integer(as.Date("2021-05-01") - model_start_date)
model_params$tt_dur_R <- c(0, ch_dur_R, ch_dur_R+60)
model_params$gamma_R <- c(model_params$gamma_R, 2/obs_params$dur_R, model_params$gamma_R)
}
}
if("prob_hosp_multiplier" %in% names(obs_params)) {
if(obs_params$prob_hosp_multiplier != 1) {
ch_dur_R <- as.integer(as.Date("2021-05-01") - model_start_date)
model_params$tt_prob_hosp_multiplier <- c(0, ch_dur_R)
model_params$prob_hosp_multiplier <- c(model_params$prob_hosp_multiplier, obs_params$prob_hosp_multiplier)
}
}
# run model
model_func <- squire_model$odin_model(user = model_params,
unused_user_action = "ignore")
out <- model_func$run(t = seq(0, tail(steps, 1), 1), atol = 1e-6, rtol = 1e-6)
index <- squire:::odin_index(model_func)
# get deaths for comparison
Ds <- diff(rowSums(out[c(data$day_end[2]-7, data$day_end[-1]), index$D]))
Ds[Ds < 0] <- 0
deaths <- data$deaths[-1]
# what type of ll for deaths
if (obs_params$treated_deaths_only) {
Ds_heathcare <- diff(rowSums(out[, index$D_get]))
Ds_heathcare <- Ds_heathcare[data$day_end[-1]]
ll <- ll_pois(deaths, Ds_heathcare, obs_params$phi_death,
obs_params$k_death, obs_params$exp_noise)
}
else {
ll <- ll_pois(deaths, Ds, obs_params$phi_death, obs_params$k_death,
obs_params$exp_noise)
}
# now the ll for the seroprevalence
sero_df <- obs_params$sero_df
lls <- 0
if(!is.null(sero_df)) {
if(nrow(sero_df) > 0) {
sero_at_date <- function(date, symptoms, det, dates, N) {
di <- which(dates == date)
to_sum <- tail(symptoms[seq_len(di)], length(det))
min(sum(rev(to_sum)*head(det, length(to_sum)), na.rm=TRUE)/N, 0.99)
}
# get symptom incidence
symptoms <- rowSums(out[,index$E2]) * model_params$gamma_E
# dates of incidence, pop size and dates of sero surveys
dates <- data$date[[1]] + seq_len(nrow(out)) - 1L
N <- sum(model_params$population)
sero_dates <- list(sero_df$date_end, sero_df$date_start, sero_df$date_start + as.integer((sero_df$date_end - sero_df$date_start)/2))
unq_sero_dates <- unique(c(sero_df$date_end, sero_df$date_start, sero_df$date_start + as.integer((sero_df$date_end - sero_df$date_start)/2)))
det <- obs_params$sero_det
# estimate model seroprev
sero_model <- vapply(unq_sero_dates, sero_at_date, numeric(1), symptoms, det, dates, N)
sero_model_mat <- do.call(cbind,lapply(sero_dates, function(x) {sero_model[match(x, unq_sero_dates)]}))
# likelihood of model obvs
lls <- rowMeans(dbinom(sero_df$sero_pos, sero_df$samples, sero_model_mat, log = TRUE))
}
}
# and wrap up as normal
date <- data$date[[1]] + seq_len(nrow(out)) - 1L
rownames(out) <- as.character(date)
attr(out, "date") <- date
pf_results <- list()
pf_results$log_likelihood <- sum(ll) + sum(lls)
if (save_history) {
pf_results$states <- out
}
else if (return == "single") {
pf_results$sample_state <- out[nrow(out), ]
}
if (return == "ll") {
ret <- pf_results$log_likelihood
}
else if (return == "sample") {
ret <- pf_results$states
}
else if (return == "single" || return == "full") {
ret <- pf_results
}
ret
}
pmcmc_iran <- function(data,
n_mcmc,
log_likelihood = NULL,
log_prior = NULL,
n_particles = 1e2,
steps_per_day = 4,
output_proposals = FALSE,
n_chains = 1,
squire_model = explicit_model(),
pars_obs = list(phi_cases = 1,
k_cases = 2,
phi_death = 1,
k_death = 2,
exp_noise = 1e6),
pars_init = list('start_date' = as.Date("2020-02-07"),
'R0' = 2.5,
'Meff' = 2,
'Meff_pl' = 3,
"R0_pl_shift" = 0),
pars_min = list('start_date' = as.Date("2020-02-01"),
'R0' = 0,
'Meff' = 1,
'Meff_pl' = 2,
"R0_pl_shift" = -2),
pars_max = list('start_date' = as.Date("2020-02-20"),
'R0' = 5,
'Meff' = 3,
'Meff_pl' = 4,
"R0_pl_shift" = 5),
pars_discrete = list('start_date' = TRUE,
'R0' = FALSE,
'Meff' = FALSE,
'Meff_pl' = FALSE,
"R0_pl_shift" = FALSE),
proposal_kernel = NULL,
scaling_factor = 1,
reporting_fraction = 1,
treated_deaths_only = FALSE,
country = NULL,
population = NULL,
contact_matrix_set = NULL,
baseline_contact_matrix = NULL,
date_contact_matrix_set_change = NULL,
R0_change = NULL,
date_R0_change = NULL,
hosp_bed_capacity = NULL,
baseline_hosp_bed_capacity = NULL,
date_hosp_bed_capacity_change = NULL,
ICU_bed_capacity = NULL,
baseline_ICU_bed_capacity = NULL,
date_ICU_bed_capacity_change = NULL,
date_vaccine_change = NULL,
baseline_max_vaccine = NULL,
max_vaccine = NULL,
date_vaccine_efficacy_infection_change = NULL,
baseline_vaccine_efficacy_infection = NULL,
vaccine_efficacy_infection = NULL,
date_vaccine_efficacy_disease_change = NULL,
baseline_vaccine_efficacy_disease = NULL,
vaccine_efficacy_disease = NULL,
Rt_args = NULL,
burnin = 0,
replicates = 100,
forecast = 0,
required_acceptance_ratio = 0.23,
start_adaptation = round(n_mcmc/2),
gibbs_sampling = FALSE,
gibbs_days = NULL,
...) {
#------------------------------------------------------------
# Section 1 of pMCMC Wrapper: Checks & Setup
#------------------------------------------------------------
#--------------------
# assertions & checks
#--------------------
# if nimue keep to 1 step per day
if(inherits(squire_model, "nimue_model")) {
steps_per_day <- 1
}
# we work with pars_init being a list of inital conditions for starting
if(any(c("start_date", "R0") %in% names(pars_init))) {
pars_init <- list(pars_init)
}
# make it same length as chains, which allows us to pass in multiple starting points
if(length(pars_init) != n_chains) {
pars_init <- rep(pars_init, n_chains)
pars_init <- pars_init[seq_len(n_chains)]
}
# data assertions
squire:::assert_dataframe(data)
squire:::assert_in("date", names(data))
squire:::assert_in("deaths", names(data))
squire:::assert_date(data$date)
squire:::assert_increasing(as.numeric(as.Date(data$date)),
message = "Dates must be in increasing order")
# check input pars df
squire:::assert_list(pars_init)
squire:::assert_list(pars_init[[1]])
squire:::assert_list(pars_min)
squire:::assert_list(pars_max)
squire:::assert_list(pars_discrete)
squire:::assert_eq(names(pars_init[[1]]), names(pars_min))
squire:::assert_eq(names(pars_min), names(pars_max))
squire:::assert_eq(names(pars_max), names(pars_discrete))
squire:::assert_in(c("R0", "start_date"),names(pars_init[[1]]),
message = "Params to infer must include R0, start_date")
squire:::assert_date(pars_init[[1]]$start_date)
squire:::assert_date(pars_min$start_date)
squire:::assert_date(pars_max$start_date)
if (pars_max$start_date >= as.Date(data$date[1])-1) {
stop("Maximum start date must be at least 2 days before the first date in data")
}
# check date variables are as Date class
for(i in seq_along(pars_init)) {
pars_init[[i]]$start_date <- as.Date(pars_init[[i]]$start_date)
}
pars_min$start_date <- as.Date(pars_min$start_date)
pars_max$start_date <- as.Date(pars_max$start_date)
# check bounds
for(var in names(pars_init[[1]])) {
squire:::assert_bounded(as.numeric(pars_init[[1]][[var]]),
left = as.numeric(pars_min[[var]]),
right = as.numeric(pars_max[[var]]),
name = paste(var, "init"))
squire:::assert_single_numeric(as.numeric(pars_min[[var]]), name = paste(var, "min"))
squire:::assert_single_numeric(as.numeric(pars_max[[var]]), name = paste(var, "max"))
squire:::assert_single_numeric(as.numeric(pars_init[[1]][[var]]), name = paste(var, "init"))
}
# additonal checks that R0 is positive as undefined otherwise
squire:::assert_pos(pars_min$R0)
squire:::assert_pos(pars_max$R0)
squire:::assert_pos(pars_init[[1]]$R0)
squire:::assert_bounded(pars_init[[1]]$R0, left = pars_min$R0, right = pars_max$R0)
# check proposal kernel
squire:::assert_matrix(proposal_kernel)
if (gibbs_sampling) {
squire:::assert_eq(colnames(proposal_kernel), names(pars_init[[1]][-1]))
squire:::assert_eq(rownames(proposal_kernel), names(pars_init[[1]][-1]))
} else {
squire:::assert_eq(colnames(proposal_kernel), names(pars_init[[1]]))
squire:::assert_eq(rownames(proposal_kernel), names(pars_init[[1]]))
}
# check likelihood items
if ( !(is.null(log_likelihood) | inherits(log_likelihood, "function")) ) {
stop("Log Likelihood (log_likelihood) must be null or a user specified function")
}
if ( !(is.null(log_prior) | inherits(log_prior, "function")) ) {
stop("Log Likelihood (log_likelihood) must be null or a user specified function")
}
squire:::assert_logical(unlist(pars_discrete))
squire:::assert_list(pars_obs)
squire:::assert_in(c("phi_cases", "k_cases", "phi_death", "k_death", "exp_noise"), names(pars_obs))
squire:::assert_numeric(unlist(pars_obs[c("phi_cases", "k_cases", "phi_death", "k_death", "exp_noise")]))
# mcmc items
squire:::assert_pos_int(n_mcmc)
squire:::assert_pos_int(n_chains)
squire:::assert_pos_int(n_particles)
squire:::assert_logical(output_proposals)
# squire and odin
squire:::assert_custom_class(squire_model, "squire_model")
squire:::assert_pos_int(steps_per_day)
squire:::assert_numeric(reporting_fraction)
squire:::assert_bounded(reporting_fraction, 0, 1, inclusive_left = FALSE, inclusive_right = TRUE)
squire:::assert_pos_int(replicates)
# date change items
squire:::assert_same_length(R0_change, date_R0_change)
# checks that dates are not in the future compared to our data
if (!is.null(date_R0_change)) {
squire:::assert_date(date_R0_change)
if(as.Date(tail(date_R0_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_R0_change is greater than the last date in data")
}
}
# ------------------------------------
# checks on odin interacting variables
# ------------------------------------
if(!is.null(contact_matrix_set)) {
squire:::assert_list(contact_matrix_set)
}
squire:::assert_same_length(contact_matrix_set, date_contact_matrix_set_change)
squire:::assert_same_length(ICU_bed_capacity, date_ICU_bed_capacity_change)
squire:::assert_same_length(hosp_bed_capacity, date_hosp_bed_capacity_change)
squire:::assert_same_length(max_vaccine, date_vaccine_change)
squire:::assert_same_length(vaccine_efficacy_infection, date_vaccine_efficacy_infection_change)
squire:::assert_same_length(vaccine_efficacy_disease, date_vaccine_efficacy_disease_change)
# handle contact matrix changes
if(!is.null(date_contact_matrix_set_change)) {
squire:::assert_date(date_contact_matrix_set_change)
squire:::assert_list(contact_matrix_set)
if(is.null(baseline_contact_matrix)) {
stop("baseline_contact_matrix can't be NULL if date_contact_matrix_set_change is provided")
}
if(as.Date(tail(date_contact_matrix_set_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_contact_matrix_set_change is greater than the last date in data")
}
# Get in correct format
if(is.matrix(baseline_contact_matrix)) {
baseline_contact_matrix <- list(baseline_contact_matrix)
}
tt_contact_matrix <- c(0, seq_len(length(date_contact_matrix_set_change)))
contact_matrix_set <- append(baseline_contact_matrix, contact_matrix_set)
} else {
tt_contact_matrix <- 0
contact_matrix_set <- baseline_contact_matrix
}
# handle ICU changes
if(!is.null(date_ICU_bed_capacity_change)) {
squire:::assert_date(date_ICU_bed_capacity_change)
squire:::assert_vector(ICU_bed_capacity)
squire:::assert_numeric(ICU_bed_capacity)
if(is.null(baseline_ICU_bed_capacity)) {
stop("baseline_ICU_bed_capacity can't be NULL if date_ICU_bed_capacity_change is provided")
}
squire:::assert_numeric(baseline_ICU_bed_capacity)
if(as.Date(tail(date_ICU_bed_capacity_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_ICU_bed_capacity_change is greater than the last date in data")
}
tt_ICU_beds <- c(0, seq_len(length(date_ICU_bed_capacity_change)))
ICU_bed_capacity <- c(baseline_ICU_bed_capacity, ICU_bed_capacity)
} else {
tt_ICU_beds <- 0
ICU_bed_capacity <- baseline_ICU_bed_capacity
}
# handle vaccine changes
if(!is.null(date_vaccine_change)) {
squire:::assert_date(date_vaccine_change)
squire:::assert_vector(max_vaccine)
squire:::assert_numeric(max_vaccine)
squire:::assert_numeric(baseline_max_vaccine)
if(is.null(baseline_max_vaccine)) {
stop("baseline_max_vaccine can't be NULL if date_vaccine_change is provided")
}
if(as.Date(tail(date_vaccine_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_vaccine_change is greater than the last date in data")
}
tt_vaccine <- c(0, seq_len(length(date_vaccine_change)))
max_vaccine <- c(baseline_max_vaccine, max_vaccine)
} else {
tt_vaccine <- 0
if(!is.null(baseline_max_vaccine)) {
max_vaccine <- baseline_max_vaccine
} else {
max_vaccine <- 0
}
}
# handle vaccine efficacy disease changes
if(!is.null(date_vaccine_efficacy_infection_change)) {
squire:::assert_date(date_vaccine_efficacy_infection_change)
if(!is.list(vaccine_efficacy_infection)) {
vaccine_efficacy_infection <- list(vaccine_efficacy_infection)
}
squire:::assert_vector(vaccine_efficacy_infection[[1]])
squire:::assert_numeric(vaccine_efficacy_infection[[1]])
squire:::assert_numeric(baseline_vaccine_efficacy_infection)
if(is.null(baseline_vaccine_efficacy_infection)) {
stop("baseline_vaccine_efficacy_infection can't be NULL if date_vaccine_efficacy_infection_change is provided")
}
if(as.Date(tail(date_vaccine_efficacy_infection_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_vaccine_efficacy_infection_change is greater than the last date in data")
}
tt_vaccine_efficacy_infection <- c(0, seq_len(length(date_vaccine_efficacy_infection_change)))
vaccine_efficacy_infection <- c(list(baseline_vaccine_efficacy_infection), vaccine_efficacy_infection)
} else {
tt_vaccine_efficacy_infection <- 0
if(!is.null(baseline_vaccine_efficacy_infection)) {
vaccine_efficacy_infection <- baseline_vaccine_efficacy_infection
} else {
vaccine_efficacy_infection <- rep(0.8, 17)
}
}
# handle vaccine efficacy disease changes
if(!is.null(date_vaccine_efficacy_disease_change)) {
squire:::assert_date(date_vaccine_efficacy_disease_change)
if(!is.list(vaccine_efficacy_disease)) {
vaccine_efficacy_disease <- list(vaccine_efficacy_disease)
}
squire:::assert_vector(vaccine_efficacy_disease[[1]])
squire:::assert_numeric(vaccine_efficacy_disease[[1]])
squire:::assert_numeric(baseline_vaccine_efficacy_disease)
if(is.null(baseline_vaccine_efficacy_disease)) {
stop("baseline_vaccine_efficacy_disease can't be NULL if date_vaccine_efficacy_disease_change is provided")
}
if(as.Date(tail(date_vaccine_efficacy_disease_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_vaccine_efficacy_disease_change is greater than the last date in data")
}
tt_vaccine_efficacy_disease <- c(0, seq_len(length(date_vaccine_efficacy_disease_change)))
vaccine_efficacy_disease <- c(list(baseline_vaccine_efficacy_disease), vaccine_efficacy_disease)
} else {
tt_vaccine_efficacy_disease <- 0
if(!is.null(baseline_vaccine_efficacy_disease)) {
vaccine_efficacy_disease <- baseline_vaccine_efficacy_disease
} else {
vaccine_efficacy_disease <- rep(0.95, 17)
}
}
# handle hosp bed changed
if(!is.null(date_hosp_bed_capacity_change)) {
squire:::assert_date(date_hosp_bed_capacity_change)
squire:::assert_vector(hosp_bed_capacity)
squire:::assert_numeric(hosp_bed_capacity)
if(is.null(baseline_hosp_bed_capacity)) {
stop("baseline_hosp_bed_capacity can't be NULL if date_hosp_bed_capacity_change is provided")
}
squire:::assert_numeric(baseline_hosp_bed_capacity)
if(as.Date(tail(date_hosp_bed_capacity_change,1)) > as.Date(tail(data$date, 1))) {
stop("Last date in date_hosp_bed_capacity_change is greater than the last date in data")
}
tt_hosp_beds <- c(0, seq_len(length(date_hosp_bed_capacity_change)))
hosp_bed_capacity <- c(baseline_hosp_bed_capacity, hosp_bed_capacity)
} else {
tt_hosp_beds <- 0
hosp_bed_capacity <- baseline_hosp_bed_capacity
}
#----------------
# Generate Odin items
#----------------
# make the date definitely a date
data$date <- as.Date(as.character(data$date))
# adjust for reporting fraction
pars_obs$phi_cases <- reporting_fraction
pars_obs$phi_death <- reporting_fraction
pars_obs$treated_deaths_only <- treated_deaths_only
# build model parameters
model_params <- squire_model$parameter_func(
country = country,
population = population,
dt = 1/steps_per_day,
contact_matrix_set = contact_matrix_set,
tt_contact_matrix = tt_contact_matrix,
hosp_bed_capacity = hosp_bed_capacity,
tt_hosp_beds = tt_hosp_beds,
ICU_bed_capacity = ICU_bed_capacity,
tt_ICU_beds = tt_ICU_beds,
max_vaccine = max_vaccine,
tt_vaccine = tt_vaccine,
vaccine_efficacy_infection = vaccine_efficacy_infection,
tt_vaccine_efficacy_infection = tt_vaccine_efficacy_infection,
vaccine_efficacy_disease = vaccine_efficacy_disease,
tt_vaccine_efficacy_disease = tt_vaccine_efficacy_disease,
...)
# collect interventions for odin model likelihood
interventions <- list(
R0_change = R0_change,
date_R0_change = date_R0_change,
date_contact_matrix_set_change = date_contact_matrix_set_change,
contact_matrix_set = contact_matrix_set,
date_ICU_bed_capacity_change = date_ICU_bed_capacity_change,
ICU_bed_capacity = ICU_bed_capacity,
date_hosp_bed_capacity_change = date_hosp_bed_capacity_change,
hosp_bed_capacity = hosp_bed_capacity,
date_vaccine_change = date_vaccine_change,
max_vaccine = max_vaccine,
date_vaccine_efficacy_disease_change = date_vaccine_efficacy_disease_change,
vaccine_efficacy_disease = vaccine_efficacy_disease,
date_vaccine_efficacy_infection_change = date_vaccine_efficacy_infection_change,
vaccine_efficacy_infection = vaccine_efficacy_infection
)
#----------------..
# Collect Odin and MCMC Inputs
#----------------..
inputs <- list(
data = data,
n_mcmc = n_mcmc,
model_params = model_params,
interventions = interventions,
pars_obs = pars_obs,
Rt_args = Rt_args,
squire_model = squire_model,
pars = list(pars_obs = pars_obs,
pars_init = pars_init,
pars_min = pars_min,
pars_max = pars_max,
proposal_kernel = proposal_kernel,
scaling_factor = scaling_factor,
pars_discrete = pars_discrete),
n_particles = n_particles)
#----------------
# create prior and likelihood functions given the inputs
#----------------
if(is.null(log_prior)) {
# set improper, uninformative prior
log_prior <- function(pars) log(1e-10)
}
calc_lprior <- log_prior
if(is.null(log_likelihood)) {
log_likelihood <- squire:::calc_loglikelihood
} else if (!('...' %in% names(formals(log_likelihood)))){
stop('log_likelihood function must be able to take unnamed arguments')
}
# create shorthand function to calc_ll given main inputs
calc_ll <- function(pars) {
X <- log_likelihood(pars = pars,
data = data,
squire_model = squire_model,
model_params = model_params,
interventions = interventions,
pars_obs = pars_obs,
n_particles = n_particles,
forecast_days = 0,
Rt_args = Rt_args,
return = "ll"
)
X
}
#----------------
# create mcmc run functions depending on whether Gibbs Sampling
#----------------
if(gibbs_sampling) {
# checking gibbs days is specified and is an integer
if (is.null(gibbs_days)) {
stop("if gibbs_sampling == TRUE, gibbs_days must be specified")
}
squire:::assert_int(gibbs_days)
# create our gibbs run func wrapper
run_mcmc_func <- function(...) {
force(gibbs_days)
squire:::run_mcmc_chain_gibbs(..., gibbs_days = gibbs_days)
}
} else {
run_mcmc_func <- squire:::run_mcmc_chain
}
#----------------
# proposals
#----------------
# needs to be a vector to pass to reflecting boundary function
pars_min <- unlist(pars_min)
pars_max <- unlist(pars_max)
pars_discrete <- unlist(pars_discrete)
#--------------------------------------------------------
# Section 2 of pMCMC Wrapper: Run pMCMC
#--------------------------------------------------------
# Run the chains in parallel
message("Running pMCMC...")
if (Sys.getenv("SQUIRE_PARALLEL_DEBUG") == "TRUE") {
chains <- purrr::pmap(
.l = list(n_mcmc = rep(n_mcmc, n_chains),
curr_pars = pars_init),
.f = run_mcmc_func,
inputs = inputs,
calc_lprior = calc_lprior,
calc_ll = calc_ll,
first_data_date = data$date[1],
output_proposals = output_proposals,
required_acceptance_ratio = required_acceptance_ratio,
start_adaptation = start_adaptation,
proposal_kernel = proposal_kernel,
scaling_factor = scaling_factor,
pars_discrete = pars_discrete,
pars_min = pars_min,
pars_max = pars_max)
} else {
chains <- furrr::future_pmap(
.l = list(n_mcmc = rep(n_mcmc, n_chains),
curr_pars = pars_init),
.f = run_mcmc_func,
inputs = inputs,
calc_lprior = calc_lprior,
calc_ll = calc_ll,
first_data_date = data$date[1],
output_proposals = output_proposals,
required_acceptance_ratio = required_acceptance_ratio,
start_adaptation = start_adaptation,
proposal_kernel = proposal_kernel,
scaling_factor = scaling_factor,
pars_discrete = pars_discrete,
pars_min = pars_min,
pars_max = pars_max,
.progress = TRUE,
.options = furrr::furrr_options(seed = NULL))
}
#----------------
# MCMC diagnostics and tidy
#----------------
if (n_chains > 1) {
names(chains) <- paste0('chain', seq_len(n_chains))
# calculating rhat
# convert parallel chains to a coda-friendly format
chains_coda <- lapply(chains, function(x) {
traces <- x$results
if('start_date' %in% names(pars_init[[1]])) {
traces$start_date <- squire:::start_date_to_offset(data$date[1], traces$start_date)
}
coda::as.mcmc(traces[, names(pars_init[[1]])])
})
rhat <- tryCatch(expr = {
x <- coda::gelman.diag(chains_coda)
x
}, error = function(e) {
message('unable to calculate rhat')
})
pmcmc <- list(inputs = chains[[1]]$inputs,
rhat = rhat,
chains = lapply(chains, '[', -1))
class(pmcmc) <- 'squire_pmcmc_list'
} else {
pmcmc <- chains[[1]]
class(pmcmc) <- "squire_pmcmc"
}
#--------------------------------------------------------
# Section 3 of pMCMC Wrapper: Sample PMCMC Results
#--------------------------------------------------------
pmcmc_samples <- squire:::sample_pmcmc(pmcmc_results = pmcmc,
burnin = burnin,
n_chains = n_chains,
n_trajectories = replicates,
log_likelihood = log_likelihood,
n_particles = n_particles,
forecast_days = forecast)
#--------------------------------------------------------
# Section 4 of pMCMC Wrapper: Tidy Output
#--------------------------------------------------------
#----------------
# Pull Sampled results and "recreate" squire models
#----------------
# create a fake run object and fill in the required elements
r <- squire_model$run_func(country = country,
contact_matrix_set = contact_matrix_set,
tt_contact_matrix = tt_contact_matrix,
hosp_bed_capacity = hosp_bed_capacity,
tt_hosp_beds = tt_hosp_beds,
ICU_bed_capacity = ICU_bed_capacity,
tt_ICU_beds = tt_ICU_beds,
max_vaccine = max_vaccine,
tt_vaccine = tt_vaccine,
vaccine_efficacy_infection = vaccine_efficacy_infection,
tt_vaccine_efficacy_infection = tt_vaccine_efficacy_infection,
vaccine_efficacy_disease = vaccine_efficacy_disease,
tt_vaccine_efficacy_disease = tt_vaccine_efficacy_disease,
population = population,
replicates = 1,
day_return = TRUE,
time_period = nrow(pmcmc_samples$trajectories),
...)
# and add the parameters that changed between each simulation, i.e. posterior draws
r$replicate_parameters <- pmcmc_samples$sampled_PMCMC_Results
# as well as adding the pmcmc chains so it's easy to draw from the chains again in the future
r$pmcmc_results <- pmcmc
# then let's create the output that we are going to use
names(pmcmc_samples)[names(pmcmc_samples) == "trajectories"] <- "output"
dimnames(pmcmc_samples$output) <- list(dimnames(pmcmc_samples$output)[[1]], dimnames(r$output)[[2]], NULL)
r$output <- pmcmc_samples$output
# and adjust the time as before
full_row <- match(0, apply(r$output[,"time",],2,function(x) { sum(is.na(x)) }))
saved_full <- r$output[,"time",full_row]
for(i in seq_len(replicates)) {
na_pos <- which(is.na(r$output[,"time",i]))
full_to_place <- saved_full - which(rownames(r$output) == as.Date(max(data$date))) + 1L
if(length(na_pos) > 0) {
full_to_place[na_pos] <- NA
}
r$output[,"time",i] <- full_to_place
}
# second let's recreate the output
r$model <- pmcmc_samples$inputs$squire_model$odin_model(
user = pmcmc_samples$inputs$model_params, unused_user_action = "ignore"
)
# we will add the interventions here so that we know what times are needed for projection
r$interventions <- interventions
# and fix the replicates
r$parameters$replicates <- replicates
r$parameters$time_period <- as.numeric(diff(as.Date(range(rownames(r$output)))))
r$parameters$dt <- model_params$dt
#--------------------..
# out
#--------------------..
return(r)
}
generate_draws <- function(out, draws = 10, parallel = TRUE, burnin = 100, log_likelihood = iran_log_likelihood) {
# handle for no death days
if(!("pmcmc_results" %in% names(out))) {
message("`out` was not generated by pmcmc as no deaths for this country. \n",
"Returning the oroginal object, which assumes epidemic seeded on date ",
"fits were run")
return(out)
}
# grab information from the pmcmc run
pmcmc <- out$pmcmc_results
squire_model <- out$pmcmc_results$inputs$squire_model
country <- out$parameters$country
population <- out$parameters$population
interventions <- out$interventions
data <- out$pmcmc_results$inputs$data
# sample parameters
replicates <- draws
burnin <- burnin
if("chains" %in% names(out$pmcmc_results)) {
n_chains <- length(out$pmcmc_results$chains)
} else {
n_chains <- 1
}
n_particles <- 2
forecast <- 0
# are we drawing in parallel
if (parallel) {
suppressWarnings(future::plan(future::multisession()))
}
#--------------------------------------------------------
# Section 3 of pMCMC Wrapper: Sample PMCMC Results
#--------------------------------------------------------
pmcmc_samples <- squire:::sample_pmcmc(pmcmc_results = pmcmc,
burnin = burnin,
n_chains = n_chains,
n_trajectories = replicates,
n_particles = n_particles,
forecast_days = forecast,
log_likelihood = log_likelihood)
#--------------------------------------------------------
# Section 4 of pMCMC Wrapper: Tidy Output
#--------------------------------------------------------
# create a fake run object and fill in the required elements
r <- squire_model$run_func(country = country,
contact_matrix_set = pmcmc$inputs$model_params$contact_matrix_set,
tt_contact_matrix = pmcmc$inputs$model_params$tt_matrix,
hosp_bed_capacity = pmcmc$inputs$model_params$hosp_bed_capacity,
tt_hosp_beds = pmcmc$inputs$model_params$tt_hosp_beds,
ICU_bed_capacity = pmcmc$inputs$model_params$ICU_bed_capacity,
tt_ICU_beds = pmcmc$inputs$model_params$tt_ICU_beds,
population = population,
day_return = TRUE,
replicates = 1,
time_period = nrow(pmcmc_samples$trajectories))
# and add the parameters that changed between each simulation, i.e. posterior draws
r$replicate_parameters <- pmcmc_samples$sampled_PMCMC_Results
# as well as adding the pmcmc chains so it's easy to draw from the chains again in the future
r$pmcmc_results <- pmcmc
# then let's create the output that we are going to use
names(pmcmc_samples)[names(pmcmc_samples) == "trajectories"] <- "output"
dimnames(pmcmc_samples$output) <- list(dimnames(pmcmc_samples$output)[[1]], dimnames(r$output)[[2]], NULL)
r$output <- pmcmc_samples$output
# and adjust the time as before
full_row <- match(0, apply(r$output[,"time",],2,function(x) { sum(is.na(x)) }))
saved_full <- r$output[,"time",full_row]
for(i in seq_len(replicates)) {
na_pos <- which(is.na(r$output[,"time",i]))
full_to_place <- saved_full - which(rownames(r$output) == as.Date(max(data$date))) + 1L
if(length(na_pos) > 0) {
full_to_place[na_pos] <- NA
}
r$output[,"time",i] <- full_to_place
}
# second let's recreate the output
r$model <- pmcmc_samples$inputs$squire_model$odin_model(
user = pmcmc_samples$inputs$model_params, unused_user_action = "ignore"
)
# we will add the interventions here so that we know what times are needed for projection
r$interventions <- interventions
# and fix the replicates
r$parameters$replicates <- replicates
r$parameters$time_period <- as.numeric(diff(as.Date(range(rownames(r$output)))))
r$parameters$dt <- pmcmc$inputs$model_params$dt
return(r)
}
generate_draws_no_vacc <- function(out, draws = 10, parallel = TRUE, burnin = 100, log_likelihood = iran_log_likelihood) {
# handle for no death days
if(!("pmcmc_results" %in% names(out))) {
message("`out` was not generated by pmcmc as no deaths for this country. \n",
"Returning the oroginal object, which assumes epidemic seeded on date ",
"fits were run")
return(out)
}
# grab information from the pmcmc run
pmcmc <- out$pmcmc_results
squire_model <- out$pmcmc_results$inputs$squire_model
country <- out$parameters$country
population <- out$parameters$population
interventions <- out$interventions
data <- out$pmcmc_results$inputs$data
# sample parameters
replicates <- draws
burnin <- burnin
if("chains" %in% names(out$pmcmc_results)) {
n_chains <- length(out$pmcmc_results$chains)
} else {
n_chains <- 1
}
n_particles <- 2
forecast <- 0
# are we drawing in parallel
if (parallel) {
suppressWarnings(future::plan(future::multisession()))
}
# now let's remove vaccines
interventions$max_vaccine <- rep(0, length(interventions$max_vaccine))
pmcmc$inputs$interventions <- interventions
#--------------------------------------------------------
# Section 3 of pMCMC Wrapper: Sample PMCMC Results
#--------------------------------------------------------
pmcmc_samples <- squire:::sample_pmcmc(pmcmc_results = pmcmc,
burnin = burnin,
n_chains = n_chains,
n_trajectories = replicates,
n_particles = n_particles,
forecast_days = forecast,
log_likelihood = log_likelihood)
#--------------------------------------------------------
# Section 4 of pMCMC Wrapper: Tidy Output
#--------------------------------------------------------
# create a fake run object and fill in the required elements
r <- squire_model$run_func(country = country,
contact_matrix_set = pmcmc$inputs$model_params$contact_matrix_set,
tt_contact_matrix = pmcmc$inputs$model_params$tt_matrix,
hosp_bed_capacity = pmcmc$inputs$model_params$hosp_bed_capacity,
tt_hosp_beds = pmcmc$inputs$model_params$tt_hosp_beds,
ICU_bed_capacity = pmcmc$inputs$model_params$ICU_bed_capacity,
tt_ICU_beds = pmcmc$inputs$model_params$tt_ICU_beds,
population = population,
day_return = TRUE,
replicates = 1,
time_period = nrow(pmcmc_samples$trajectories))
# and add the parameters that changed between each simulation, i.e. posterior draws
r$replicate_parameters <- pmcmc_samples$sampled_PMCMC_Results
# as well as adding the pmcmc chains so it's easy to draw from the chains again in the future
r$pmcmc_results <- pmcmc
# then let's create the output that we are going to use
names(pmcmc_samples)[names(pmcmc_samples) == "trajectories"] <- "output"
dimnames(pmcmc_samples$output) <- list(dimnames(pmcmc_samples$output)[[1]], dimnames(r$output)[[2]], NULL)
r$output <- pmcmc_samples$output
# and adjust the time as before
full_row <- match(0, apply(r$output[,"time",],2,function(x) { sum(is.na(x)) }))
saved_full <- r$output[,"time",full_row]
for(i in seq_len(replicates)) {
na_pos <- which(is.na(r$output[,"time",i]))
full_to_place <- saved_full - which(rownames(r$output) == as.Date(max(data$date))) + 1L
if(length(na_pos) > 0) {
full_to_place[na_pos] <- NA
}
r$output[,"time",i] <- full_to_place
}
# second let's recreate the output
r$model <- pmcmc_samples$inputs$squire_model$odin_model(
user = pmcmc_samples$inputs$model_params, unused_user_action = "ignore"
)
# we will add the interventions here so that we know what times are needed for projection
r$interventions <- interventions
# and fix the replicates
r$parameters$replicates <- replicates
r$parameters$time_period <- as.numeric(diff(as.Date(range(rownames(r$output)))))
r$parameters$dt <- pmcmc$inputs$model_params$dt
return(r)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.