tuneEdgeWeights: Tune edge weights

View source: R/DataParsingFunctions.R

tuneEdgeWeightsR Documentation

Tune edge weights

Description

tuneEdgeWeights generates cell homogeneity scores for possible edge weight settings across all labelEdge matrices. To speed up calculations cells can be subsampled to a specified sampleDepth (default 10000).

Usage

tuneEdgeWeights(
  cellEdges,
  labelEdgesList,
  labelEdgeOpts = 10^seq(-4, 4, 1),
  sampleDepth = 10000,
  steps,
  cellTypes,
  parallel = FALSE,
  numCores = 1,
  trackProgress = FALSE,
  tensorflow = FALSE
)

Arguments

cellEdges

matrix of cell-to-cell similarity (c-by-c)

labelEdgesList

list of cell-to-label similarity matrices each with dimensions c-by-l

labelEdgeOpts

vector of weights to test for label edges

sampleDepth

integer depth to subsample cells to for faster calculation

steps

integer indicating number of steps to take if walk should not be run to convergence

cellTypes

list of names of cell types, if not provided unique cell labels are used

parallel

boolean, execute in parallel

numCores

integer, number of cores to use for parallel execution

trackProgress

boolean, print percent run completed

tensorflow

boolean to indicate whether to compute on GPU

Value

data frame of weights with corresponding cell homogeneity

Examples

data("SampleCellWalkRData")
labelEdgesList <- list(SampleCellWalkRData$labelEdges)
tuneEdgeWeights(SampleCellWalkRData$cellEdges, labelEdgesList, 10^seq(1,7,1))


PFPrzytycki/CellWalkR documentation built on Oct. 26, 2023, 1:50 p.m.