| doHclust | R Documentation | 
cluster cells using hierarchical clustering algorithm
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL,
  name = "hclust",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
| gobject | giotto object | 
| expression_values | expression values to use | 
| genes_to_use | subset of genes to use | 
| dim_reduction_to_use | dimension reduction to use | 
| dim_reduction_name | dimensions reduction name | 
| dimensions_to_use | dimensions to use | 
| distance_method | distance method | 
| agglomeration_method | agglomeration method for hclust | 
| k | number of final clusters | 
| h | cut hierarchical tree at height = h | 
| name | name for hierarchical clustering | 
| return_gobject | boolean: return giotto object (default = TRUE) | 
| set_seed | set seed | 
| seed_number | number for seed | 
Description on how to use Kmeans clustering method.
giotto object with new clusters appended to cell metadata
hclust
data(mini_giotto_single_cell)
mini_giotto_single_cell = doHclust(mini_giotto_single_cell, k = 4, name = 'hier_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'hier_clus', point_size = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.