#' Computation of the expectation step in the EM-algorithm.
#' @param y Data matrix
#' @param A System state matrix
#' @param C Observation matrix
#' @param R Observation equation variance
#' @param Q System state equation variance
#' @param W Logical matrix with dim(W) = dim(y)
#' indicating missing observations
#' @param initx Initial value for state variable
#' @param initV Initial value for state matrix
#' @return Sufficient statistics used for M-step
Estep <- function(y, A, C, Q, R, initx, initV, W) {
os <- dim(y)[1]
T <- dim(y)[2]
ss <- nrow(A)
kf <- K_filter(initx, initV, t(y), A, C, R, Q)
ks <- K_smoother(A, kf$xitt, kf$xittm, kf$Ptt, kf$Pttm, C, R, W)
# kf <- KalmanFilterCpp(t(y), C, Q, R, A, initx, initV)
# ks <- KalmanSmootherCpp(A, C, R,
# kf$xitt, kf$xittm, kf$Ptt, kf$Pttm)
xsmooth <- ks$xitT
Vsmooth <- ks$PtT
Wsmooth <- ks$PtTm
delta <- matrix(0, os, ss)
gamma <- matrix(0, ss, ss)
beta <- matrix(0, ss, ss)
for (t in 1:T) {
z <- y[,t]; z[is.na(z)] <- 0
# There could be an issue here
delta <- delta + z %*% t(xsmooth[,t])
gamma <- gamma + xsmooth[,t] %*% t(xsmooth[,t]) + Vsmooth[,,t]
if (t > 1) {
beta <- beta + xsmooth[,t] %*% t(xsmooth[,(t-1)]) + Wsmooth[,,t]
}
}
gamma1 <- gamma - xsmooth[, T] %*% t(xsmooth[, T]) - Vsmooth[, , T]
gamma2 <- gamma - xsmooth[, 1] %*% t(xsmooth[, 1]) - Vsmooth[, , 1]
x1 <- xsmooth[, 1]
V1 <- Vsmooth[, , 1]
return(list(beta_t = beta, gamma_t = gamma, delta_t = delta, gamma1_t = gamma1,
gamma2_t = gamma2, x1 = x1, V1 = V1, loglik_t = kf$loglik, xsmooth = xsmooth))
}
#' Implements a Kalman for dynamic factor model.
#'
#' @param initx Initial value for state space observations
#' @param initV Initial value for state covariance
#' @param x Observation matrix
#' @param A State space matrix
#' @param C System matrix
#' @param R State space covariance
#' @param Q System covariance
#' @return Filtered state space variable and its covariance matrix
#' as well as their forecast for next period for further iterations
#' @importFrom stats na.omit
K_filter <- function(initx, initV, x, A, C, R, Q) {
T <- dim(x)[1]
N <- dim(x)[2]
r <- dim(A)[1]
W <- !is.na(x)
y <- t(x)
xittm <- matrix(0, r, (T+1))
xitt <- matrix(0, r, T)
Pttm <- array(0, c(r, r, (T+1)))
Ptt <- array(0, c(r, r, T))
xittm[,1] <- initx
Pttm[,,1] <- initV
logl <- c()
Ci <- C
Ri <- R
for (j in 1:T) {
# missing_data <- MissData(y[,j], C, R)
# C <- missing_data$C
# R <- missing_data$R
C <- Ci[W[j,],, drop=FALSE]
R <- Ri[W[j,], W[j,], drop=FALSE]
if (FALSE) #(all(!W[j,])) #(all(is.na(missing_data$y) == TRUE))
{
xitt[,,j] <- A %*% xittm[,,j]
Ptt[,,j] <- C %*% Pttm[,,j] %*% t(C) + R
} else
{
# Innovation covariance (inverse)
Icov <- C %*% Pttm[,,j] %*% t(C) + R
L <- solve(Icov)
# Innovation residual
Ires <- as.numeric(na.omit(y[,j])) - C %*% xittm[,j]
# Optimal Kalman gain
G <- Pttm[,,j] %*% t(C) %*% L
# Updated state estimate: predicted + (Kalman gain)*fitted
xitt[,j] <- xittm[,j] + G %*% Ires
# Updated covariance estimate
Ptt[,,j] <- Pttm[,,j] - G %*% C %*% Pttm[,,j]
# State space variable and covariance predictions E[f_t | t-1]
xittm[,(j+1)] <- A %*% xitt[,j]
Pttm[,,(j+1)] <- A %*% Ptt[,,j] %*% t(A) + Q
# Compute log-likelihood with Mahalanobis distance
d <- length(Ires)
S <- C %*% Pttm[,,j] %*% t(C) + R
Sinv <- solve(S)
if (nrow(R) == 1)
{
GG <- t(C) %*% solve(R) %*% C
detS <- prod(R) %*% det(diag(1, r) + Pttm[,,j] %*% GG)
} else {
GG <- t(C) %*% diag(1/diag(R)) %*% C
detS <- prod(diag(R)) * det(diag(1, r) + Pttm[,,j] %*% GG)
}
denom <- (2 * pi)^(d/2) * sqrt(abs(detS))
mahal <- sum(t(Ires) %*% Ires) # Sinv %*% Ires)
logl[j] <- -0.5 * mahal - log(denom)
}
}
loglik <- sum(logl, na.rm=TRUE)
return(list(xitt = xitt, xittm = xittm, Ptt = Ptt, Pttm = Pttm, loglik = loglik))
}
#' Implements Kalman smoothing and is used along with Kalman filter.
#' Kalman filter outputs enter Kalman smoother as inputs.
#'
#' @param A State space matrix
#' @param xitt State space variable
#' @param xittm Predicted state space variable
#' @param Ptt State space covariance
#' @param Pttm Predicted state space covariance
#' @param C System matrix
#' @param R State space covariance
#' @param W Logical matrix (T x n) indicating missing data.
#' TRUE if observation is present, FALSE if it is missing.
#' @return Smoothed state space variable and state space covariance matrix
K_smoother <- function(A, xitt, xittm, Ptt, Pttm, C, R, W) {
T <- dim(xitt)[2]
r <- dim(A)[1]
Pttm <- Pttm[,,(1:(dim(Pttm)[3] - 1)), drop = FALSE]
xittm <- xittm[,(1:(dim(xittm)[2] - 1)), drop = FALSE]
# Whereas J is of constant dimension, L and K dimensions may vary
# depending on existence of NAs
J <- array(0, c(r, r, T))
L <- list()
K <- list()
for (i in 1:(T-1)) {
J[,,i] <- Ptt[,,i] %*% t(A) %*% solve(Pttm[,,(i+1)], tol = 1e-32)
}
Ci <- C
Ri <- R
for (i in 1:T) {
# Only keep entries for non-missing data
C <- Ci[W[i,],, drop=FALSE]
R <- Ri[W[i,], W[i,], drop=FALSE]
L[[i]] <- solve(C %*% Pttm[,,i] %*% t(C) + R)
K[[i]] <- Pttm[,,i] %*% t(C) %*% L[[i]]
}
xitT <- cbind(matrix(0, r, (T-1)), xitt[,T])
PtT <- array(0, c(r, r, T))
PtTm <- array(0, c(r, r, T))
PtT[,,T] <- Ptt[,,T]
PtTm[,,T] <- (diag(1, r) - K[[T]] %*% C) %*% A %*% Ptt[,,(T-1)]
for (j in 1:(T-1)) {
xitT[,(T-j)] <- xitt[,(T-j)] + J[,,(T-j)] %*% (xitT[,(T+1-j)] - xittm[,(T+1-j)])
PtT[,,(T-j)] <- Ptt[,,(T-j)] + J[,,(T-j)] %*% (PtT[,,(T+1-j)] - Pttm[,,(T+1-j)]) %*% t(J[,,(T-j)])
}
for (j in 1:(T-2)) {
PtTm[,,(T-j)] <- Ptt[,,(T-j)] %*% t(J[,,(T-j-1)]) + J[,,(T-j)] %*% (PtTm[,,(T-j+1)] - A %*% Ptt[,,(T-j)]) %*% t(J[,,(T-j-1)])
}
return(list(xitT = xitT, PtT = PtT, PtTm = PtTm))
}
#' Implementation of Kim (1994) filter, an extension to Kalman filter
#' for dynamic linear models with Markov-switching. Documentation
#' is incomplete, rudimentary and needs to be rechecked!
#'
#' @param x0 Initial condition for state vector
#' @param P0 Initial condition for state variance
#' @param y Data matrix (Txn)
#' @param F System matrix for measurement equation
#' @param A Transition matrix for state equation
#' @param R Error covariance for measurement equation
#' @param Q Error covariance for state equation
#' @param p Transition probability matrix
#' @return Filtered states and covariances with associated probability matrices.
KimFilter <- function(x0, P0, y, F, A, R, Q, p)
{
## Define all containers for further computations. Notations for variables and
## indices, where appropriate, carefully follow Kim (1994). State vector is
## denoted as 'x', its covariance as 'P'. Appended letters explicit whether
## these are updated, approximated or smoothed.
if (is.vector(y) || (ncol(y) <= length(x0)))
stop("Number of factors should be strictly lower than number of variables. \n
Increase number of variables or estimate a VAR model instead.")
T <- nrow(y)
n <- dim(F)[1]
J <- length(x0)
s <- dim(p)[1]
## x: x^(i,j)_(t|t-1): predicted state vector - (2.6)
## xU: x^(i,j)_(t|t): updated state vector - (2.11)
## P: P^(i,j)_(t|t-1): predicted state covariance - (2.7)
## Pu: P^(i,j)_(t|t): updated state covariance - (2.12)
## eta: eta^(i,j)_(t|t-1): conditional forecast error - (2.8)
## H: H^(i,j)_(t): conditional variance of forecast error - (2.9)
## K: K^(i,j)_(t): Kalman gain - (2.10)
## lik: f(y_t, S_(t-1)=i, S_t = j | t-1): joint conditional density - (2.16)
## loglik: log of (2.16)
x <- array(NA, c(T,J,s,s))
xU <- array(NA, c(T,J,s,s))
P <- array(NA, c(T,J,J,s,s))
Pu <- array(NA, c(T,J,J,s,s))
eta <- array(NA, c(T,n,s,s))
H <- array(NA, c(T,n,n,s,s))
K <- array(NA, c(T,J,n,s,s))
lik <- array(NA, c(T,s,s))
loglik <- array(NA, c(T,s,s))
## Pr[S_(t-1) = i, S_t = j | t-1 ]: (2.15)
## Pr[S_(t-1) = i, S_t = j | t ]: (2.17)
## Pr[S_t = j | t-1 ]: used only for the smoothing part
## Pr[S_t = j | t ]: (2.18)
jointP_fut <- array(NA, c(T,s,s))
jointP_cur <- array(NA, c((T+1),s,s))
stateP_fut <- array(NA, c(T,s))
stateP <- array(NA, c(T,s))
## x^(j)_(t|t): approximate state vector conditional on S_j - (2.13)
## P^(j)_(t|t): approximate state covariance conditional on S_j - (2.14)
xA <- array(NA, c(T,J,s))
Pa <- array(0, c(T,J,J,s))
result <- array(0, c(T,1))
loglikf <- c()
## Some initial conditions to get started
for (i in 1:s) { xA[1,,i] <- x0 }
for (i in 1:s) { Pa[1,,,i] <- P0 }
jointP_cur[1,,] <- matrix(c(0.25,0.25,0.25,0.25), ncol=2)
temp <- array(NA, c(T,s,s))
for (t in 2:T)
{
for (j in 1:s)
{
for (i in 1:s)
{
x[t,,i,j] <- A[,,j] %*% xA[(t-1),,i]
P[t,,,i,j] <- A[,,j] %*% Pa[(t-1),,,i] %*% t(A[,,j]) + Q
eta[t,,i,j] <- y[t,] - as(F[,,j], "matrix") %*% x[t,,i,j]
H[t,,,i,j] <- F[,,j] %*% as(P[t,,,i,j], "matrix") %*% t(F[,,j]) + R
K[t,,,i,j] <- P[t,,,i,j] %*% t(F[,,j]) %*% solve(H[t,,,i,j])
xU[t,,i,j] <- x[t,,i,j] + K[t,,,i,j] %*% eta[t,,i,j]
Pu[t,,,i,j] <- (diag(1,J) - K[t,,,i,j] %*% F[,,j]) %*% P[t,,,i,j]
jointP_fut[t,i,j] <- p[i,j]*sum(jointP_cur[(t-1),,i]) # is everything alright here?
lik[t,i,j] <- (2*pi)^(-n/2) * det(H[t,,,i,j])^(-1/2) *
exp(-1/2*t(eta[t,,i,j]) %*% solve(H[t,,,i,j]) %*% eta[t,,i,j]) *
jointP_fut[t,i,j]
loglik[t,i,j] <- log(lik[t,i,j])
jointP_cur[t,i,j] <- lik[t,i,j]
loglikf[t] <- sum(loglik[t,,])
}
## Technically, there should be sum(lik[t,,]) term but it cancels out and is computed later
stateP[t,j] <- sum(jointP_cur[t,,j])
stateP_fut[t,j] <- sum(jointP_fut[t,,j])
## Compute probability-filtered state process and its covariance
xA[t,,j] <- xU[t,,,j] %*% jointP_cur[t,,j] / stateP[t,j]
for (i in 1:s)
{
Pa[t,,,j] <- Pa[t,,,j] +
(Pu[t,,,i,j] + (xA[t,,j] - xU[t,,i,j]) %*% t(xA[t,,j] - xU[t,,i,j])) *
exp(log(jointP_cur[t,i,j]) - log(stateP[t,j]))
}
}
jointP_cur[t,,] <- exp(log(jointP_cur[t,,]) - log(sum(lik[t,,])))
stateP[t,] <- exp(log(stateP[t,]) - log(sum(lik[t,,])))
result[t,1] <- log(sum(lik[t,,]))
}
return(list("result"=sum(result), "xA"=xA, "Pa"=Pa, "x"=x, "P"=P, "stateP"=stateP, "stateP_fut"=stateP_fut, "loglik"=loglik, "jointP"=jointP_fut, "lik"=result, "temp"=temp))
}
#' Smoothing algorithm from Kim (1994) to be used following a run
#' of KimFilter function.
#'
#' @param xA Filtered state vector to be smoothed
#' @param Pa Filtered state covariance to be smoothed
#' @param x State-dependent state vector
#' @param P State-dependent state covariance
#' @param A Array with transition matrices
#' @param p Markov transition matrix
#' @param stateP Evolving current probability matrix
#' @param stateP_fut Predicted probability matrix
#' @return Smoothed states and covariance matrices. This is the equivalent
#' of Kalman smoother in Markov-switching case.
KimSmoother2 <- function(xA, Pa, A, P, x, p, stateP, stateP_fut)
{
## Define all containers for further computations. Notations for variables and
## indices, where appropriate, carefully follow Kim (1994). State vector is
## denoted as 'x', its covariance as 'P'. Appended letters explicit whether
## these are updated, approximated or smoothed.
T <- dim(xA)[1]
J <- dim(xA)[2]
s <- dim(xA)[3]
## Pr[S_t = j, S_(t+1) = k | T]: (2.20)
## Pr[S_t = j | T]: (2.21)
jointPs <- array(NA, c(T,s,s))
ProbS <- array(NA, c(T,s))
## xS: x^(j,k)_(t|T): inference of x_t based on full sample - (2.24)
## Ps: P^(j,k)_(t|T): covariance matrix of x^(j,k)_(t|T) - (2.25)
## Ptilde: helper matrix as defined after (2.25)
xS <- array(0, c(T,J,s,s))
Ps <- array(0, c(T,J,J,s,s))
Ptilde <- array(NA, c(T,J,J,s,s))
## xAS: x^(j)_(t|T): smoothed and approximated state vector conditional on S_j (2.26)
## Pas: P^(j)_(t|T): smoothed and approximated state covariance conditional on S_j (2.27)
## xF: x_(t|T): state-weighted [F]inal state vector (2.28)
## Pf: P_(t|T): state-weighted [f]inal state covariance
xAS <- array(0, c(T,J,s))
Pas <- array(0, c(T,J,J,s))
xF <- array(0, c(T,J))
Pf <- array(0, c(T,J,J))
# Initial conditions for smoothing loop
ProbS[T,] <- stateP[T,]
for (t in seq(T-1,1,-1))
{
for (j in 1:s)
{
for (k in 1:s)
{
jointPs[t,j,k] <- ProbS[(t+1),k]*stateP[t,j]*p[j,k] / stateP_fut[(t+1),k]
Ptilde[t,,,j,k] <- Pa[t,,,j] %*% t(A[,,k]) %*% solve(P[(t+1),,,j,k])
xS[t,,j,k] <- xA[t,,j] + Ptilde[t,,,j,k] %*% (xA[(t+1),,k] - x[(t+1),,j,k])
Ps[t,,,j,k] <- Pa[t,,,j] +
Ptilde[t,,,j,k] %*% (Pa[(t+1),,,k] - P[(t+1),,,j,k]) %*% t(Ptilde[t,,,j,k])
xAS[t,,j] <- xAS[t,,j] + jointPs[t,j,k]*xS[t,,j,k]
Pas[t,,,j] <- Pas[t,,,j] + jointPs[t,j,k]*(Ps[t,,,j,k] +
(xAS[t,,j] - xS[t,,j,k]) %*% t(xAS[t,,j] - xS[t,,j,k]))
}
ProbS[t,j] <- sum(jointPs[t,j,])
xAS[t,,j] <- xAS[t,,j] / ProbS[t,j]
Pas[t,,,j] <- Pas[t,,,j] / ProbS[t,j]
}
}
for (t in 1:T)
{
for (j in 1:s)
{
xF[t,] <- xF[t,] + xAS[t,,j]*ProbS[t,j]
Pf[t,,] <- Pf[t,,] + Pas[t,,,j]*ProbS[t,j]
}
}
return(list("xF"=xF, "Pf"=Pf, "ProbS"=ProbS))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.