Description Usage Arguments Details Value Author(s) References See Also Examples
The BNB() function defines the beta negative binomial distribution, a three parameter distribution, for a gamlss.family object to be used  in GAMLSS fitting using the function gamlss().   
The functions dBNB, pBNB, qBNB and rBNB define the density, distribution function, quantile function and random
generation for the beta negative binomial distribution, BNB().
The functions ZABNB() and ZIBNB() are the zero adjusted (hurdle) and zero inflated versions of the beta negative binomial distribution, respectively. That is four  parameter distributions. 
The functions dZABNB, dZIBNB, pZABNB,pZIBNB, qZABNB qZIBNB rZABNB and  rZIBNB define the probability,  cumulative, quantile  and random
generation functions for the zero adjusted and zero inflated  beta negative binomial distributions, ZABNB(), ZIBNB(), respectively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  | BNB(mu.link = "log", sigma.link = "log", nu.link = "log")
dBNB(x, mu = 1, sigma = 1, nu = 1, log = FALSE)
pBNB(q, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBNB(p, mu = 1, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE, 
     max.value = 10000)
rBNB(n, mu = 1, sigma = 1, nu = 1, max.value = 10000)
ZABNB(mu.link = "log", sigma.link = "log", nu.link = "log",
      tau.link = "logit")
dZABNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE)
pZABNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, 
       log.p = FALSE)
qZABNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, 
       log.p = FALSE, max.value = 10000)
rZABNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)
ZIBNB(mu.link = "log", sigma.link = "log", nu.link = "log", 
      tau.link = "logit")
dZIBNB(x, mu = 1, sigma = 1, nu = 1, tau = 0.1, log = FALSE)
pZIBNB(q, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, 
       log.p = FALSE)
qZIBNB(p, mu = 1, sigma = 1, nu = 1, tau = 0.1, lower.tail = TRUE, 
       log.p = FALSE, max.value = 10000)
rZIBNB(n, mu = 1, sigma = 1, nu = 1, tau = 0.1, max.value = 10000)       
 | 
mu.link | 
 The link function for   | 
sigma.link | 
 The link function for   | 
nu.link | 
 The link function for   | 
tau.link | 
 The link function for   | 
x | 
 vector of (non-negative integer)  | 
mu | 
 vector of positive means  | 
sigma | 
 vector of positive dispersion parameter  | 
nu | 
 vector of a positive parameter  | 
tau | 
 vector of probabilities  | 
log, log.p | 
 logical; if TRUE, probabilities p are given as log(p)  | 
lower.tail | 
 logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]  | 
p | 
 vector of probabilities  | 
q | 
 vector of quantiles  | 
n | 
 number of random values to return  | 
max.value | 
 a constant, set to the default value of 10000 for how far the algorithm should look for q  | 
The probability function of the BNB is 
f(y|μ,σ, ν)=(Γ(y+1/ν)Β(y+(μν)/σ, 1/σ+1/ν +1 )/(Γ(y+1) Γ(1/ν) Β((μν)/σ, 1/σ+1) )
for y=0,1,2,3,..., μ>0, σ>0 and ν>0.
The distribution has mean μ.
returns a gamlss.family object which can be used to fit a Poisson distribution in the gamlss() function.  
Bob Rigby and Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  | BNB()   # gives information about the default links for the beta negative binomial
# plotting the distribution
plot(function(y) dBNB(y, mu = 10, sigma = 0.5, nu=2), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them 
tN <- table(Ni <- rBNB(1000, mu=5, sigma=0.5, nu=2))
r <- barplot(tN, col='lightblue')
ZABNB()
ZIBNB()
# plotting the distribution
plot(function(y) dZABNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1),  
     from=0, to=40, n=40+1, type="h")
plot(function(y) dZIBNB(y, mu = 10, sigma = 0.5, nu=2, tau=.1),  
     from=0, to=40, n=40+1, type="h")
## Not run: 
library(gamlss)
data(species)
species <- transform(species, x=log(lake))
m6 <- gamlss(fish~ pb(x), sigma.fo=~1, data=species, family=BNB)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.