Description Usage Arguments Details Value Warning Note Author(s) References See Also Examples
The NBI()
function defines the Negative Binomial type I distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dNBI
, pNBI
, qNBI
and rNBI
define the density, distribution function, quantile function and random
generation for the Negative Binomial type I, NBI()
, distribution.
1 2 3 4 5 |
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Negative Binomial type I distribution.
P(Y=y|μ, σ)= Γ(y+1/σ)/Γ(1/σ) Γ(y+1) ((σ μ)/ (1+σ μ))^y(1/(1+σ μ))^{1/σ}
for y=0,1,2, ...,Inf, μ>0 and σ>0. This parameterization is equivalent to that used by Anscombe (1950) except he used alpha=1/sigma instead of sigma.
returns a gamlss.family
object which can be used to fit a Negative Binomial type I distribution in the gamlss()
function.
For values of sigma<0.0001 the d,p,q,r functions switch to the Poisson distribution
mu is the mean and (mu+sigma*mu^2)^0.5 is the standard deviation of the Negative Binomial type I distribution (so sigma is the dispersion parameter in the usual GLM for the negative binomial type I distribution)
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Calliope Akantziliotou
Anscombe, F. J. (1950) Sampling theory of the negative bimomial and logarithmic distributiona, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family
, NBII
, PIG
, SI
1 2 3 4 5 6 7 8 9 10 11 | NBI() # gives information about the default links for the Negative Binomial type I distribution
# plotting the distribution
plot(function(y) dNBI(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=NBI, data=aids) # fits the model
# plot(h)
# pdf.plot(family=NBI, mu=10, sigma=0.5, min=0, max=40, step=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.