Description Usage Arguments Details Value Warning Author(s) References See Also Examples
This function defines the generalized beta type 1 distribution, a four parameter distribution.
The function GB1
creates a gamlss.family
object which can be used to fit the distribution using the function
gamlss()
. Note the range of the response variable is from zero to one.
The functions dGB1
,
GB1
, qGB1
and rGB1
define the density,
distribution function, quantile function and random
generation for the generalized beta type 1 distribution.
1 2 3 4 5 6 7 8 | GB1(mu.link = "logit", sigma.link = "logit", nu.link = "log",
tau.link = "log")
dGB1(x, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, log = FALSE)
pGB1(q, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE,
log.p = FALSE)
qGB1(p, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE,
log.p = FALSE)
rGB1(n, mu = 0.5, sigma = 0.4, nu = 1, tau = 1)
|
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the Generalized Beta type 1, (GB1
), is defined as
f(y|mu,sigma,nu,tau)=(tau*nu^beta*y^(tau*alpha-1)(1-y^tau))^(beta-1)/(Beta(alpha,beta)*(nu+(1-nu)*y^tau))^(alpha*beta))
where 0<y<1, alpha=mu*(1-sigma^2)/sigma^2 and (1-mu)*(1-sigma^2)/sigma^2, and alpha>0, beta>0. Note the alpha/(alpha+beta), sigma=(alpha+beta+1)^(-1/2). .
GB1()
returns a gamlss.family
object which can be used to fit the GB1 distribution in the
gamlss()
function.
dGB1()
gives the density, pGB1()
gives the distribution
function, qGB1()
gives the quantile function, and rGB1()
generates random deviates.
The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles
Bob Rigby and Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.