Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function GA
defines the gamma distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
. The parameterization used has the mean of the distribution equal to mu and the variance equal to
(sigma^2)*(mu^2).
The functions dGA
, pGA
, qGA
and rGA
define the density, distribution function, quantile function and random
generation for the specific parameterization of the gamma distribution defined by function GA
.
1 2 3 4 5 |
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The specific parameterization of the gamma distribution used in GA
is
f(y|mu,sigma)=(y^((1/sigma^2)-1)*exp[-y/((sigma^2)*mu)])/((sigma^2*mu)^(1/sigma^2) Gamma(1/sigma^2))
for y>0, μ>0 and σ>0.
GA()
returns a gamlss.family
object which can be used to fit a gamma distribution in the gamlss()
function.
dGA()
gives the density, pGA()
gives the distribution
function, qGA()
gives the quantile function, and rGA()
generates random deviates. The latest functions are based on the equivalent R
functions for gamma distribution.
mu is the mean of the distribution in GA
. In the function GA
, sigma is the square root of the
usual dispersion parameter for a GLM gamma model. Hence sigma*mu is the standard deviation of the distribution defined in GA
.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 8 | GA()# gives information about the default links for the gamma distribution
# dat<-rgamma(100, shape=1, scale=10) # generates 100 random observations
# fit a gamlss model
# gamlss(dat~1,family=GA)
# fits a constant for each parameter mu and sigma of the gamma distribution
newdata<-rGA(1000,mu=1,sigma=1) # generates 1000 random observations
hist(newdata)
rm(dat,newdata)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.