Description Usage Arguments Details Value Author(s) References See Also Examples
The function LG
defines the logarithmic distribution, a one parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dLG
, pLG
, qLG
and rLG
define the
density, distribution function, quantile function
and random generation for the logarithmic , LG()
, distribution.
The function ZALG
defines the zero adjusted logarithmic distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZALG
, pZALG
, qZALG
and rZALG
define the
density, distribution function, quantile function
and random generation for the inflated logarithmic , ZALG()
, distribution.
1 2 3 4 5 6 7 8 9 10 | LG(mu.link = "logit")
dLG(x, mu = 0.5, log = FALSE)
pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rLG(n, mu = 0.5)
ZALG(mu.link = "logit", sigma.link = "logit")
dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE)
pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZALG(n, mu = 0.5, sigma = 0.1)
|
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
valued needed for the numerical calculation of the q-function |
For the definition of the distributions see Rigby and Stasinopoulos (2010) below.
The parameterization of the logarithmic distribution in the function LM
is
f(y|mu) = α μ^y / y
where for y>=1 and μ>0 and
α= [log(1-μ)]^{-1}
The function LG
and ZALG
return a gamlss.family
object which can be used to fit a
logarithmic and a zero inflated logarithmic distributions respectively in the gamlss()
function.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby
Johnson, Norman Lloyd; Kemp, Adrienne W; Kotz, Samuel (2005). "Chapter 7: Logarithmic and Lagrangian distributions". Univariate discrete distributions (3 ed.). John Wiley & Sons. ISBN 9780471272465.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see http://www.gamlss.org/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.