Description Usage Arguments Details Value Author(s) References See Also Examples
The function ZAP
defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZAP
, pZAP
, qZAP
and rZAP
define the
density, distribution function, quantile function
and random generation for the inflated poisson, ZAP()
, distribution.
1 2 3 4 5 |
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
For the definition of the distribution see Rigby and Stasinopoulos (2010) below.
The function ZAP
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see http://www.gamlss.org/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family
, PO
, ZIP
, ZIP2
, ZALG
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.