Description Usage Arguments Details Value Author(s) References See Also Examples
The function ZAP defines the zero adjusted Poisson distribution, a two parameter distribution, for a gamlss.family object to be
used in GAMLSS fitting using the function gamlss(). The functions dZAP, pZAP, qZAP and rZAP define the
density, distribution function, quantile function
and random generation for the inflated poisson, ZAP(), distribution.
1 2 3 4 5 |
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
For the definition of the distribution see Rigby and Stasinopoulos (2010) below.
The function ZAP returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see http://www.gamlss.org/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family, PO, ZIP, ZIP2, ZALG
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.