Description Usage Arguments Details Value Author(s) References See Also Examples
The function BEINF() defines the beta inflated distribution, a four parameter distribution, for a
gamlss.family object to be used in GAMLSS fitting
using the function gamlss().
The beta inflated is similar to the beta but allows zeros and ones as values for the response variable.
The two extra parameters model the probabilities at zero and one.
The functions BEINF0() and BEINF1() are three parameter beta inflated distributions allowing
zeros or ones only at the response respectively. BEINF0() and BEINF1() are re-parameterize versions
of the distributions BEZI and BEOI contributed to gamlss by Raydonal Ospina
(see Ospina and Ferrari (2010)).
The functions dBEINF, pBEINF, qBEINF and rBEINF define the density, distribution function,
quantile function and random
generation for the BEINF parametrization of the beta inflated distribution.
The functions dBEINF0, pBEINF0, qBEINF0 and rBEINF0 define the density, distribution function,
quantile function and random
generation for the BEINF0 parametrization of the beta inflated at zero distribution.
The functions dBEINF1, pBEINF1, qBEINF1 and rBEINF1 define the density, distribution function,
quantile function and random
generation for the BEINF1 parametrization of the beta inflated at one distribution.
plotBEINF, plotBEINF0 and plotBEINF1 can be used to plot the distributions.
meanBEINF, meanBEINF0 and meanBEINF1 calculates the expected value of the response for a fitted model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | BEINF(mu.link = "logit", sigma.link = "logit", nu.link = "log",
tau.link = "log")
BEINF0(mu.link = "logit", sigma.link = "logit", nu.link = "log")
BEINF1(mu.link = "logit", sigma.link = "logit", nu.link = "log")
dBEINF(x, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
log = FALSE)
dBEINF0(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE)
dBEINF1(x, mu = 0.5, sigma = 0.1, nu = 0.1, log = FALSE)
pBEINF(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
pBEINF0(q, mu = 0.5, sigma = 0.1, nu = 0.1,
lower.tail = TRUE, log.p = FALSE)
pBEINF1(q, mu = 0.5, sigma = 0.1, nu = 0.1,
lower.tail = TRUE, log.p = FALSE)
qBEINF(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qBEINF0(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qBEINF1(p, mu = 0.5, sigma = 0.1, nu = 0.1,
lower.tail = TRUE, log.p = FALSE)
rBEINF(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1)
rBEINF0(n, mu = 0.5, sigma = 0.1, nu = 0.1)
rBEINF1(n, mu = 0.5, sigma = 0.1, nu = 0.1)
plotBEINF(mu = 0.5, sigma = 0.5, nu = 0.5, tau = 0.5,
from = 0.001, to = 0.999, n = 101, ...)
plotBEINF0(mu = 0.5, sigma = 0.5, nu = 0.5,
from = 1e-04, to = 0.9999, n = 101, ...)
plotBEINF1(mu = 0.5, sigma = 0.5, nu = 0.5,
from = 1e-04, to = 0.9999, n = 101, ...)
meanBEINF(obj)
meanBEINF0(obj)
meanBEINF1(obj)
|
mu.link |
the |
sigma.link |
the |
nu.link |
the |
tau.link |
the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of parameter values modelling the probability at zero |
tau |
vector of parameter values modelling the probability at one |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
from |
where to start plotting the distribution from |
to |
up to where to plot the distribution |
obj |
a fitted |
... |
other graphical parameters for plotting |
The beta inflated distribution is given as
f(y)=p0
if (y=0)
f(y)=p1
if (y=1)
f(y|a,b)=(1/(Beta(a,b))) y^(a-1)(1-y)^(b-1)
otherwise
for y=(0,1), α>0 and β>0. The parametrization in the function BEINF() is
mu=a/(a+b) and sigma=1/(a+b+1)
for mu=(0,1) and sigma=(0,1) and nu=p0/p2,
tau=p1/p2 where p2=1-p0-p1.
returns a gamlss.family object which can be used to fit a beta inflated distribution in the gamlss() function.
...
Bob Rigby and Mikis Stasinopoulos
Ospina R. and Ferrari S. L. P. (2010) Inflated beta distributions, Statistical Papers, 23, 111-126.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family, BE, BEo, BEZI, BEOI
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | BEINF()# gives information about the default links for the beta inflated distribution
BEINF0()
BEINF1()
# plotting the distributions
op<-par(mfrow=c(2,2))
plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101)
plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101)
plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101)
curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999)
par(op)
# plotting the cdf
op<-par(mfrow=c(2,2))
plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF")
plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0")
plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1")
curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE")
par(op)
#---------------------------------------------
op<-par(mfrow=c(2,2))
plotBEINF( mu =.5 , sigma=.5, nu = 0.5, tau = 0.5, from = 0, to=1, n = 101, main="BEINF")
plotBEINF0( mu =.5 , sigma=.5, nu = 0.5, from = 0, to=1, n = 101, main="BEINF0")
plotBEINF1( mu =.5 , sigma=.5, nu = 0.5, from = 0.001, to=1, n = 101, main="BEINF1")
curve(dBE(x, mu =.5, sigma=.5), 0.01, 0.999, main="BE")
par(op)
#---------------------------------------------
op<-par(mfrow=c(2,2))
curve( pBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5,), 0, 1, ylim=c(0,1), main="BEINF" )
curve(pBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF0")
curve(pBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), 0, 1, ylim=c(0,1), main="BEINF1")
curve( pBE(x, mu=.5 ,sigma=.5), .001, .99, ylim=c(0,1), main="BE")
par(op)
#---------------------------------------------
op<-par(mfrow=c(2,2))
curve(qBEINF(x, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5), .01, .99, main="BEINF" )
curve(qBEINF0(x, mu=.5 ,sigma=.5, nu = 0.5), .01, .99, main="BEINF0" )
curve(qBEINF1(x, mu=.5 ,sigma=.5, nu = 0.5), .01, .99, main="BEINF1" )
curve(qBE(x, mu=.5 ,sigma=.5), .01, .99 , main="BE")
par(op)
#---------------------------------------------
op<-par(mfrow=c(2,2))
hist(rBEINF(200, mu=.5 ,sigma=.5, nu = 0.5, tau = 0.5))
hist(rBEINF0(200, mu=.5 ,sigma=.5, nu = 0.5))
hist(rBEINF1(200, mu=.5 ,sigma=.5, nu = 0.5))
hist(rBE(200, mu=.5 ,sigma=.5))
par(op)
# fit a model to the data
# library(gamlss)
#m1<-gamlss(dat~1,family=BEINF)
#meanBEINF(m1)[1]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.