Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function GU
defines the Gumbel distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
.
The functions dGU
, pGU
, qGU
and rGU
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Gumbel distribution.
1 2 3 4 5 |
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The specific parameterization of the Gumbel distribution used in GU
is
f(y|mu,sigma)= (1/sigma)*exp(((y-mu)/sigma)-exp((y-mu)/sigma))
for y=(-Inf,+Inf), μ=(-Inf,+Inf) and σ>0.
GU()
returns a gamlss.family
object which can be used to fit a Gumbel distribution in the gamlss()
function.
dGU()
gives the density, pGU()
gives the distribution
function, qGU()
gives the quantile function, and rGU()
generates random deviates.
The mean of the distribution is mu-0.57722*sigma and the variance is (pi^2)*(sigma^2)/6.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 | plot(function(x) dGU(x, mu=0,sigma=1), -6, 3,
main = "{Gumbel density mu=0,sigma=1}")
GU()# gives information about the default links for the Gumbel distribution
dat<-rGU(100, mu=10, sigma=2) # generates 100 random observations
hist(dat)
# library(gamlss)
# gamlss(dat~1,family=GU) # fits a constant for each parameter mu and sigma
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.