Description Usage Arguments Details Value Author(s) References See Also Examples
The function GIG defines the generalized inverse gaussian distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions DIG
, pGIG
, GIG
and rGIG
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the generalized inverse gaussian distribution defined by function GIG.
1 2 3 4 5 6 7 8 9 |
mu.link |
Defines the mu.link, with "log" link as the default for the |
sigma.link |
Defines the sigma.link, with "log" link as the default for the |
nu.link |
Defines the nu.link, with "identity" link as the default for the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of shape parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
n |
number of observations. If length(n) > 1, the length is taken to be the number required |
... |
for extra arguments |
The specific parameterization of the generalized inverse gaussian distribution used in GIG is f(y|mu,sigma,nu)=((c/mu)^nu)*(y^(nu-1))/(2*besselK(1/sigma,nu))*exp(-1/(2*sigma)*(c*y/mu+mu/(c*y))) where c = besselK(1/sigma,nu+1)/besselK(1/sigma,nu), for y>0, mu>0, sigma>0 and -Inf>nu>Inf.
GIG() returns a gamlss.family object which can be used to fit a generalized inverse gaussian distribution in the gamlss() function. DIG() gives the density, pGIG() gives the distribution function, GIG() gives the quantile function, and rGIG() generates random deviates.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Nicoleta Motpan
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Jorgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, Series: Lecture notes in statistics; 9, New York : Springer-Verlag.
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.