Description Usage Arguments Details Value Warning Author(s) References See Also Examples
This function defines the generalized t distribution, a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
.
The functions dGT
,
pGT
, qGT
and rGT
define the density,
distribution function, quantile function and random
generation for the generalized t distribution.
1 2 3 4 5 6 7 8 | GT(mu.link = "identity", sigma.link = "log", nu.link = "log",
tau.link = "log")
dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE)
pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
|
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function of the generalized t distribution, (GT
), , is defined as
f(y|mu,sigma,nu,tau)=
where 0<y<0, z=(y-mu)/sigma mu=(-Inf,+Inf), sigma>0, nu>0 and tau>0.
GT()
returns a gamlss.family
object which can be used to fit the GT distribution in the
gamlss()
function.
dGT()
gives the density, pGT()
gives the distribution
function, qGT()
gives the quantile function, and rGT()
generates random deviates.
The qGT and rGT are slow since they are relying on optimization for finding the quantiles
Bob Rigby and Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.