gamlss.dist-package: Distributions for Generalized Additive Models for Location...

Description Details Author(s) References See Also Examples

Description

A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a ”log” or a ”logit' transformation respectively.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Mikis Stasinopoulos [aut, cre, cph], Robert Rigby [aut], Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb], Fernanda De Bastiani [ctb], Raydonal Ospina [ctb], Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stocker [ctb], Jens Lichter [ctb], Stanislaus Stadlmann [ctb]

Maintainer: Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

See Also

gamlss.family

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# pdf plot
plot(function(y) dSICHEL(y, mu=10, sigma = 0.1 , nu=1 ), 
              from=0, to=30, n=30+1, type="h")
# cdf plot
PPP <- par(mfrow=c(2,1))
plot(function(y) pSICHEL(y, mu=10, sigma =0.1, nu=1 ), 
             from=0, to=30, n=30+1, type="h") # cdf
cdf<-pSICHEL(0:30, mu=10, sigma=0.1, nu=1) 
sfun1  <- stepfun(1:30, cdf, f = 0)
plot(sfun1, xlim=c(0,30), main="cdf(x)")
par(PPP)

Stan125/gamlss.dist documentation built on May 12, 2019, 7:38 a.m.