Description Usage Arguments Details Value Author(s) References See Also Examples
The function EXP defines the exponential distribution, a one parameter distribution for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The mu
parameter represents the mean of the distribution.
The functions dEXP
, pEXP
, qEXP
and rEXP
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the exponential distribution defined by function EXP.
1 2 3 4 5 |
mu.link |
Defines the mu.link, with "log" link as the default for the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
n |
number of observations. If length(n) > 1, the length is taken to be the number required |
The specific parameterization of the exponential distribution used in EXP is
f(y|mu)=1/mu*exp(-y/mu)
, for y>0, mu>0.
EXP() returns a gamlss.family object which can be used to fit an exponential distribution in the gamlss() function. dEXP() gives the density, pEXP() gives the distribution function, qEXP() gives the quantile function, and rEXP() generates random deviates.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Nicoleta Motpan
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.