R/gdsnclass_methods.R

Defines functions backup.gdsn redirect.gds

Documented in backup.gdsn redirect.gds

redirect.gds<- function(gds, rownames, colnames){
    # Wrapper to change the gdsn node "paths" whererow and colnames are stored
    a <- try(index.gdsn(gds, rownames), silent = TRUE)
    if(inherits(a, "try-error")){
        stop(paste(rownames, "does not exist in gds object!"))
    }
    b <- try(index.gdsn(gds, colnames), silent = TRUE)
    if(inherits(b, "try-error")){
        stop(paste(colnames, "does not exist in gds object!"))
    }
    add.gdsn(gds, name = "paths", replace = TRUE, val = c(rownames, colnames))
    cat("Changing 'rownames' path to:", rownames, ". \n")
    cat("Changing 'colnames' path to:", colnames, ". \n")
}

backup.gdsn <- function(gds = NULL, node){
    # Quick function to quickly copy specific nodes into a new-folder
    # called "backup". not recommended for standard workflow. see copyto.gdsn
    if(is.null(gds)) gds <- getfolder.gdsn(node)
    if(!("backup" %in% ls.gdsn(gds))) addfolder.gdsn(gds, "backup")
    copyto.gdsn(index.gdsn(gds, "backup"), node)
}

'[.gds.class' <- function(x, i, j, node, name = TRUE, drop = TRUE){
    # Method of subsetting gds.class objects while specifying node.
    # Create gdsn.class for selected node
    dat <- index.gdsn(x, node)
    # Pass to '[.gdsn.class'
    dat[i = i, j = j, name = name, drop = drop]
} # }}}

# Updated for ranked norm...
'[.gdsn.class' <- function(x, i, j, name = TRUE, drop = TRUE){ # {{{
    # Method of subsetting gdsn.class objects w.o reading in entire object.
    # Wrapper for readex.gdsn
    # arg: "name": Will point towards "fData/Probe_ID" and "pData/barcode" for row and col names. (by default)
    #              name = F will enable for faster indexing.
    # TODO: [] method? a.k.a vector method.
    # TODO: Warnings, if any.
    # TODO: Look into why logical vectors are a bit funky - hard convert into integer...
    base <- getfolder.gdsn(x)
    dim <- objdesp.gdsn(x)$dim

    # x[ , ]
    if(missing(i) & missing(j)){ # {{{
        mat <- read.gdsn(x)
        if(name){
            rownames(mat) <- read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[1]))
            colnames(mat) <- read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[2]))
        }
    } # }}}

    # x[ , j]
    if(missing(i) & !missing(j)){ # {{{
        j1 <- j
        if(is.character(j1)) j <- match(j1, read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[2]))) # ok
        if(is.logical(j1))   j <- (1:objdesp.gdsn(x)$dim[2])[j1] # Potential error here?

        ncol <- j
        mat <- as.matrix(readex.gdsn(x, sel = list(NULL, ncol)))
        if(length(j)==1) mat <- as.matrix(mat)
        if(name){
            rownames(mat) <- read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[1]))
            colnames(mat) <- readex.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[2]), sel = ncol)
        }
    } # }}}

    # x[ i, ]
    if(!missing(i) & missing(j)){ # {{{
        i1 <- i
        if(is.character(i1)) i <- match(i1, read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[1]))) # ok
        if(is.logical(i1))   i <- (1:objdesp.gdsn(x)$dim[2])[i1] # Potential error here?
        nrow <- i
        if(length(i)==1){ # Calling a single row makes naming difficult this is a work-around.
            mat <- as.matrix(t(readex.gdsn(x, sel = list(nrow, NULL))))
        } else {
            mat <- as.matrix(readex.gdsn(x, sel = list(nrow, NULL)))
        }

        if(name){
            rownames(mat) <- readex.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[1]), sel = nrow)
            colnames(mat) <- read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[2]))
        }
    } # }}}

    # x[ i, j]
    if(!missing(i) & !missing(j)){ # {{{
        i1 <- i
        if(is.character(i1)) i <- match(i1, read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[1]))) # ok
        if(is.logical(i1))   i <- (1:objdesp.gdsn(x)$dim[2])[i1] # Potential error here?
        j1 <- j
        if(is.character(j1)) j <- match(j1, read.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[2]))) # ok
        if(is.logical(j1))   j <- (1:objdesp.gdsn(x)$dim[2])[j1] # Potential error here?

        nrow <- i
        ncol <- j
        mat <- readex.gdsn(x, sel = list(nrow, ncol))

        # i=1, j=1
        if( length(i) == 1 & length(j)  == 1) mat <- matrix(mat)
        # i>1, j=1
        if(!length(i) == 1 & length(j)  == 1) mat <- matrix(mat)
        # i=1, j>1
        if( length(i) == 1 & !length(j) == 1) mat <- t(matrix(mat))

        if(name){
            rownames(mat) <- readex.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[1]), sel = nrow)
            colnames(mat) <- readex.gdsn(index.gdsn(base, read.gdsn(index.gdsn(base, "paths"))[2]), sel = ncol)
        }
    } # }}}
    # It gets complicated here... ...
    ranked <- get.attr.gdsn(x)[['ranked']]
    if(is.null(ranked)) ranked <- FALSE
    if(ranked){
        quantiles <- get.attr.gdsn(x)[['quantiles']]
        inter <- get.attr.gdsn(x)[['inter']]
        ot <- get.attr.gdsn(x)[['onetwo']]
        design <- FALSE
        if(!is.null(ot)) design <- TRUE
        isna <- index.gdsn(base, get.attr.gdsn(x)[['is.na']])[i, j, name = TRUE, drop = FALSE]
        for(z in 1:ncol(isna)){
            acol <- isna[,z]
            re <- rep(NA, length(acol))
            if(design){
                re[ot == 'I' & (!acol)] <-  approx(inter[ot == 'I'] , quantiles[ot == 'I'] , (mat[ot == 'I' & !acol, z] - 1) /(sum(ot == 'I' )-1), ties = "ordered")$y
                re[ot == 'II' & (!acol)] <- approx(inter[ot == 'II'], quantiles[ot == 'II'], (mat[ot == 'II' & !acol, z] - 1)/(sum(ot == 'II')-1), ties = "ordered")$y
            } else {
                re[!acol] <- approx(inter, quantiles, (mat[!acol, z]-1)/(length(inter)-1), ties = 'ordered')$y
            }
            mat[, z] <- re
        }
    }
    # Enable dropping on 1 row or 1 column indicies
    if(any(dim(mat) == 1)) return(mat[,,drop=drop]) else return(mat)
}

#colnames <- function (x, do.NULL = TRUE, prefix = "col")
setMethod(
    f = "colnames",
    signature(x = "gds.class"),
    definition = function(x, do.NULL = TRUE, prefix = NULL){
        read.gdsn(index.gdsn(x,read.gdsn(index.gdsn(x, "paths"))[2]))
    }
) # OK

setMethod(
    f = "colnames",
    signature(x = "gdsn.class"),
    definition = function(x, do.NULL = TRUE, prefix = NULL){
        read.gdsn(index.gdsn(getfolder.gdsn(x),
           read.gdsn(index.gdsn(getfolder.gdsn(x), "paths"))[2]))
    }
)

#rownames <- function (x, do.NULL = TRUE, prefix = "col")
setMethod(
    f = "rownames",
    signature(x = "gds.class"),
    definition = function(x, do.NULL = TRUE, prefix = NULL){
        read.gdsn(index.gdsn(x,read.gdsn(index.gdsn(x, "paths"))[1]))
    }
) # OK

setMethod(
    f = "rownames",
    signature(x = "gdsn.class"),
    definition = function(x, do.NULL = TRUE, prefix = NULL){
        read.gdsn(index.gdsn(getfolder.gdsn(x),
            read.gdsn(index.gdsn(getfolder.gdsn(x), "paths"))[1]))
    }
)


# Standard eset functions to grab matrices, including indexing:
# Calling gdsn node but will allow direct subsetting with '['
# Alternative work around would be setGeneric("betas") function(object, ...)
## setGeneric("betas", function(object, ...) standardGeneric("betas"))
#  object[i, j, node = "betas", name = TRUE, drop = FALSE]
# which overwrites other "betas" methods.
# This also applies to other eset methods.

setMethod(
    f = "betas",
    signature(object = "gds.class"),
    definition = function(object){
        index.gdsn(object, 'betas')
    }
) # OK

setMethod(
    f = "methylated",
    signature(object = "gds.class"),
    definition = function(object){
        index.gdsn(object, 'methylated')
    }
) # OK

setMethod(
    f = "unmethylated",
    signature(object = "gds.class"),
    definition = function(object){
        index.gdsn(object, 'unmethylated')
    }
) # OK

setMethod(
    f = "pvals",
    signature(object = "gds.class"),
    definition = function(object){
        index.gdsn(object, 'pvals')
    }
) # OK

# These are small and can be read completely into memory.
setMethod(
    f = "fData",
    signature(object = "gds.class"),
    definition = function(object){
        fd <- index.gdsn(object, 'fData')[ , ,name = FALSE, drop = FALSE]
        rownames(fd) <- rownames(object)
        fd
    }
) # OK

setMethod(
    f = "pData",
    signature(object = "gds.class"),
    definition = function(object){
        index.gdsn(object, 'pData')[ , , name = FALSE, drop = FALSE]
    }
) # OK

setMethod(
    f = "getHistory",
    signature(object = "gds.class"),
    definition = function(object){
        read.gdsn(index.gdsn(object, 'history'))
    }
) # AS - OK

setGeneric("QCmethylated", function(object){standardGeneric("QCmethylated")})
setMethod(
    f = "QCmethylated",
    signature(object = "gds.class"),
    definition = function(object){
        out <- read.gdsn(index.gdsn(object, 'QCmethylated'))
        rownames(out) <- QCrownames(object)
        out
    }
) # AS - OK

setGeneric("QCunmethylated",function(object){
    standardGeneric("QCunmethylated")
})
setMethod(
    f = "QCunmethylated",
    signature(object = "gds.class"),
    definition = function(object){
        out <- read.gdsn(index.gdsn(object, 'QCunmethylated'))
        rownames(out) <- QCrownames(object)
        out
    }
) # AS - OK

setGeneric("QCrownames", function(object){standardGeneric("QCrownames")})
setMethod(
    f = "QCrownames",
    signature(object = "gds.class"),
    definition = function(object){
        read.gdsn(index.gdsn(object, 'QCrownames'))
    }
) # AS - OK

setMethod(
    f = "betaqn",
    signature(bn = "gds.class"),
    definition = function(bn){
    if(bn$readonly) stop("gds object is in Read-Only mode, please reload!")
        # Create Temp Nod
        f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
        history.submitted <- as.character(Sys.time())
        # Normalise betas into Temporary object
        qn.gdsn(gds = f,
                target = index.gdsn(bn, "betas"),
                newnode = "betas")
        # Create new node in original - replacing old node.
        n.t <- add.gdsn(bn,
                        name = "betas",
                        valdim = c(objdesp.gdsn(
                                    index.gdsn(f, "betas"))$dim[1], 0),
                        val = NULL,
                        storage = "float64",
                        replace = TRUE)
        # Append new betas to original gds col by col.
        for(i in 1:dim[2]){
            val <- readex.gdsn(index.gdsn(f, "betas"), sel = list(NULL, i))
            append.gdsn(node = n.t, val = val)
        }
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with betaqn method (bigmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE)
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/", j, sep = "")
            h_child_n <- index.gdsn(bn, h_index_str, silent = TRUE)
            append.gdsn(h_child_n, val = h[,h_coln])
        }
        # Deleting Temp File.
        closefn.gds(f)
        unlink("temp.gds", force = TRUE)
    }
)

setMethod(
    f = "naten",
    signature(mn = "gds.class"),
    definition = function(mn, fudge = 100, ret2 = FALSE, node = "betas"){
    if(mn$readonly) stop("gds object is in Read-Only mode, please reload!")
        object <- mn
        history.submitted <- as.character(Sys.time())
        # Normalize using gds method - temp node created within!
        naten.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with naten method (bigmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE)
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
) # TGS

setMethod(
    f = "nanet",
    signature(mn = "gds.class"),
    definition = function(mn, fudge = 100, ret2 = FALSE, node = "betas"){
        history.submitted <- as.character(Sys.time())
        if(mn$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mn
        nanet.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with nanet method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "nanes",
    signature(mns = "gds.class"),
    definition = function(mns, fudge=100, ret2=FALSE, node = "betas", ...){
        history.submitted <- as.character(Sys.time())
        if(mns$readonly) stop("gds object in Read-Only mode")
        object <- mns
        nanes.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with nanes method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
) # TGS

setMethod(
    f = "danes",
    signature(mn = "gds.class"),
    definition = function(mn, fudge = 100, ret2 = FALSE, node = "betas",...){
        history.submitted <- as.character(Sys.time())
        if(mn$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mn
        danes.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with danes method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "danet",
    signature(mn = "gds.class"),
    definition = function(mn, fudge = 100, ret2 = FALSE, node = "betas", ...){
        history.submitted <- as.character(Sys.time())
        if(mn$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mn
        danet.gds(  gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    roco = substring(colnames(object), regexpr("R0[1-9]C0[1-9]", colnames(object))),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with danet method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors=FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
) # TGS

setMethod(
    f = "daten1",
    signature(mn = "gds.class"),
    definition = function(mn, fudge = 100, ret2 = FALSE, node = "betas", ...){
        history.submitted <- as.character(Sys.time())
        if(mn$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mn
        daten1.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    roco = substring(colnames(object), regexpr("R0[1-9]C0[1-9]", colnames(object))),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with daten1 method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "daten2",
    signature(mn = "gds.class"),
    definition = function(mn, fudge = 100,ret2 = FALSE,node = "betas", ...){
        history.submitted <- as.character(Sys.time())
        if(mn$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mn
        daten2.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    roco = substring(colnames(object), regexpr("R0[1-9]C0[1-9]", colnames(object))),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with daten2 method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "nasen",
    signature(mns = "gds.class"),
    definition = function(mns, ret2 = FALSE, fudge = 100, node = "betas"){
        history.submitted <- as.character(Sys.time())
        if(mns$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mns
        nasen.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with nasen method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors = FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "dasen",
    signature(mns = "gds.class"),
    definition = function(mns, fudge = 100, ret2 = FALSE, node ="betas", ...){
        history.submitted <- as.character(Sys.time())
        if(mns$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mns
        dasen.gds(object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo = fot(object),
                    roco = substring(colnames(object), regexpr("R0[1-9]C0[1-9]", colnames(object))),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with dasen method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors=FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "danen",
    signature(mns = "gds.class"),
    definition = function(mns, fudge = 100, ret2 = FALSE, node = "betas",...){
        history.submitted <- as.character(Sys.time())
        if(mns$readonly) stop("gds object in Read-Only mode, please reload!")
        object <- mns
        danen.gds(gds = object,
                    node,
                    mns = index.gdsn(object, "methylated"),
                    uns = index.gdsn(object, "unmethylated"),
                    onetwo =  fot(object), #fData(object)[,grep('DESIGN',
                                          #  colnames(fData(object)),
                                          #  ignore.case = TRUE)[1]],
                    roco = substring(colnames(object), regexpr("R0[1-9]C0[1-9]", colnames(object))),
                    fudge,
                    ret2
                    )
        history.finished <- as.character(Sys.time())
        history.command <- "Normalized with danen method (wateRmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors=FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

setMethod(
    f = "exprs",
    signature(object = "gds.class"),
    definition = function(object){
        exp <- data.frame(betas(object)[,, name = TRUE],
                            row.names = rownames(object),
                            check.rows = FALSE,
                            check.names = FALSE,
                            stringsAsFactors = FALSE)
        colnames(exp) <- colnames(object)
        exp
    }
) # AS - OK  # TGS -

setMethod(
    f = "pfilter",
    signature(mn = "gds.class"),
    definition = function(mn, perCount = NULL,
                            pnthresh = NULL, perc = NULL, pthresh = NULL ){
        if(mn$readonly) stop("gds object in Read-Only mode, please reload!")
        history.submitted <- as.character(Sys.time())
        object <- mn
        if("NBeads" %in% ls.gdsn(mn)){
            nb <- index.gdsn(object, "NBeads")
        } else {
            cat("NBeads missing, using betas instead... \n")
            nb   <- index.gdsn(object, "betas")
        }
        bc    <- nb
        mn    <- NULL
        bn    <- NULL
        un    <- NULL
        pn    <- pvals(object)
        da    <- NULL
        l    <- pfilter.gds(mn = mn, un = un, bn = bn, da = da,
                                pn = pn, bc = bc, perCount, pnthresh, perc,
                                pthresh)
        history.finished <- as.character(Sys.time())
        history.command <- "pfilter applied (bigmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors=FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
        lpro <- l$probes
        lsam <- l$samples
        subSet(object,which(lpro),which(lsam))
    }
)   # AS - OK # TGS - OK

#subsetting : i = features, j = samples
# TODO: Test Logical Indexing and Character Subsetting also(?)
setGeneric("subSet",function(x,i,j,...,drop=FALSE){standardGeneric("subSet")})
setMethod(
    f = "subSet",
    signature(x = "gds.class"),
    definition = function(x, i, j, ..., drop = FALSE)  {
        if(x$readonly) stop("gds object is in Read-Only mode, please reload!")
        history.submitted <- as.character(Sys.time())
        nodules <- ls.gdsn(x) # Important!
        f <- createfn.gds("temp.gds", allow.duplicate = TRUE)
        if("betas" %in% nodules){
            # Copy node to temp node colbycol
            trait <- tolower(objdesp.gdsn(betas(x))$trait)
            n.t <- add.gdsn(f, name = "betas",
                            valdim = c(objdesp.gdsn(betas(x))$dim[1],0),
                            val = NULL, storage = trait)
            for(a in 1:objdesp.gdsn(betas(x))$dim[2]){
                append.gdsn(node = n.t, val = readex.gdsn(betas(x),
                            sel=list(NULL, a)))
            }
            # Replace Old Node with Subset colbycol
            n.n <- add.gdsn(x, name = "betas", valdim = c(length(i), 0),
                            val = NULL, replace = TRUE, storage = trait)
            for(z in j){
                append.gdsn(node = n.n, val = readex.gdsn(betas(f),
                            sel = list(i, z)))
            }
        }

        if("pvals" %in% nodules){
            trait <- tolower(objdesp.gdsn(pvals(x))$trait)
            n.t <- add.gdsn(f, name = "pvals",
                            valdim = c(objdesp.gdsn(pvals(x))$dim[1],0),
                            val = NULL, storage = trait)
            for(a in 1:objdesp.gdsn(pvals(x))$dim[2]){
                append.gdsn(node = n.t, val = readex.gdsn(pvals(x),
                            sel = list(NULL, a)))
            }
            # Replace Old Node with Subset colbycol
            n.n <- add.gdsn(x, name = "pvals", valdim = c(length(i), 0),
                            val = NULL, replace = TRUE, storage = trait)
            for(z in j){
                append.gdsn(node = n.n, val = readex.gdsn(pvals(f),
                            sel = list(i, z)))
            }
        }

        if("methylated" %in% nodules){
            trait <- tolower(objdesp.gdsn(methylated(x))$trait)
            n.t <- add.gdsn(f, name="methylated",
                            valdim=c(objdesp.gdsn(methylated(x))$dim[1],0),
                            val = NULL, storage = trait)
            for(a in 1:objdesp.gdsn(methylated(x))$dim[2]){
                append.gdsn(node = n.t, val = readex.gdsn(methylated(x),
                            sel=list(NULL,a)))
            }
            # Replace Old Node with Subset colbycol
            n.n <- add.gdsn(x, name="methylated", valdim=c(length(i), 0),
                            val=NULL, replace=TRUE, storage = trait)
            for(z in j){
                append.gdsn(node = n.n, val = readex.gdsn(methylated(f),
                            sel = list(i, z)))
            }
        }

        if("unmethylated" %in% nodules){
            trait <- tolower(objdesp.gdsn(unmethylated(x))$trait)
            n.t <- add.gdsn(f, name="unmethylated",
                            valdim=c(objdesp.gdsn(unmethylated(x))$dim[1],0),
                            val = NULL, storage = trait)
            for(a in 1:objdesp.gdsn(unmethylated(x))$dim[2]){
                append.gdsn(node = n.t, val = readex.gdsn(unmethylated(x),
                            sel=list(NULL,a)))
            }
            # Replace Old Node with Subset colbycol
            n.n <- add.gdsn(x, name="unmethylated", valdim=c(length(i), 0),
                            val = NULL, replace = TRUE, storage = trait)
            for(z in j){
            append.gdsn(node = n.n, val = readex.gdsn(unmethylated(f),
                        sel=list(i, z)))
            }
        }

        if("NBeads" %in% nodules){
            nb <- index.gdsn(x, "NBeads")
            trait <- tolower(objdesp.gdsn(nb)$trait)
            n.t <- add.gdsn(f, name="NBeads",
                            valdim=c(objdesp.gdsn(nb)$dim[1],0),
                            val = NULL, storage = trait)
            for(a in 1:objdesp.gdsn(nb)$dim[2]){
                append.gdsn(node = n.t,
                            val = readex.gdsn(nb, sel=list(NULL,a)))
            }
            # Replace Old Node with Subset colbycol
            nb2 <- index.gdsn(f, "NBeads")
            n.n <- add.gdsn(x, name="NBeads", valdim=c(length(i), 0),
                            val=NULL, replace=TRUE, storage = trait)
            for(z in j){
                append.gdsn(node = n.n,
                            val = readex.gdsn(nb2, sel=list(i, z)))
            }
        }
        # These are small enough to warrant not worrying about memory use.
        if("fData" %in% nodules){
            fdatasubs <- fData(x)[i,,drop=FALSE]
            add.gdsn(x, name="fData", valdim=dim(fdatasubs),
                    val=fdatasubs, replace=TRUE)
        }

        if("pData" %in% nodules){
            pdatasubs <- pData(x)[j,,drop=FALSE]
            add.gdsn(x, name="pData", valdim=dim(pdatasubs),
                    val=pdatasubs, replace=TRUE)
        }

        if("QCmethylated" %in% nodules){
            qcmethsubs <- QCmethylated(x)[,j]
            add.gdsn(x, name="QCmethylated", valdim=dim(qcmethsubs),
                    val= qcmethsubs, replace=TRUE)
        }

        if("QCunmethylated" %in% nodules){
            qcumethsubs <- QCunmethylated(x)[,j]
            add.gdsn(x, name="QCunmethylated", valdim=dim(qcumethsubs),
                    val = qcumethsubs, replace=TRUE)
        }

        history.finished <- as.character(Sys.time())
        dim <- objdesp.gdsn(betas(x))$dim
        history.command <- paste("Subset of", dim[1],
                                "rows and", dim[2], "samples")
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors=FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(x,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
        closefn.gds(f)
        unlink("temp.gds")
    }
) # AS - OK # TGS OKish

#prcomp R/prcompGdsn.R contains S3 method!
#setMethod(
#  f = "prcomp",
#  signature(x = "gdsn.class"),
#  definition = function(x, retx = FALSE, center = FALSE, scale. = FALSE,
#                        perc = 0.01, npcs=5, ...){
#    prcomp.gdsn(x, retx, center, scale., perc, npcs)
#  }
#)

# outlyx - instead of utilizing prcomp.gdsn (since pcout isn't bigmelon
# friendly - we opt for generic use of prcomp)

setMethod(
    f = "outlyx",
    signature(x = "gdsn.class"),
    definition = function(x, iqr = TRUE, iqrP = 2, pc=1, mv = TRUE,
                            mvP = 0.15, plot = TRUE, perc = 0.01, ...){
        dimx <- objdesp.gdsn(x)$dim
        samp <- sample(1:dimx[1], dimx[1]*perc, replace=FALSE)
        outlyx(x[samp, ], iqr, iqrP, pc, mv, mvP, plot,...)
    }
)

setMethod( # Automatically select betas
    f = "outlyx",
    signature(x = "gds.class"),
    definition = function(x, iqr = TRUE, iqrP = 2, pc = 1, mv = TRUE,
                            mvP = 0.15, plot = TRUE, perc = 0.01, ...){
        outlyx(betas(x), iqr, iqrP, pc, mv, mvP, plot, perc,...)
    }
)


setMethod(
    f = "agep",
    signature(betas = "gds.class"),
    definition = function(betas, coeff, method='horvath'){
        agep(betas(betas), coeff = coeff, method=method)
    }
)

setMethod(
    f = "agep",
    signature(betas = "gdsn.class"),
    definition = function(betas, coeff, method='horvath'){
        if(is.null(coeff)){
            stop('coef is NULL, run \'data(coef)\' and supply this to agep')
            #data(coef, package='wateRmelon')
            #coeff <- coef
        }
        # Rownames method not working correctly? Kludge
        ro <- rownames(betas)
        rn <- match(names(coeff), ro)
        rn <- rn[!is.na(rn)]
        # rn <- which(rownames%in%names(coeff)[-1]) 
        betas <- betas[rn,, name = T, drop = FALSE]
        agep(betas, coeff = coeff, method=method)
    }
)

setGeneric(name= "qual")
# qual (?) # Do col by col computation of metrics. Collapse output.
setMethod(
    f= "qual",
    signature(norm="gdsn.class", raw="gdsn.class"),
    definition = function(norm, raw){
        dimnorm <- objdesp.gdsn(norm)$dim
        dimraw  <- objdesp.gdsn(raw)$dim
        if(!all(dimnorm == dimraw)) stop("Nodes are not the same dimensions")
        res <- t(sapply(1:dimnorm[2], function(x){
            dif <- norm[,x,name=F] - raw[,x,name=F]
            rmsd <- sqrt(mean(dif^2, na.rm = TRUE))
            sdd  <- sd(dif, na.rm = TRUE)
            sadd <- sd(abs(dif), na.rm = TRUE)
            srms <- rmsd/sdd
            out <- c(rmsd, sdd, sadd, srms)
            out
        } ) )
        rownames(res) <- colnames(norm)
        colnames(res) <- c("rmsd", "sdd", "sadd", "srms")
        res
    }
)

# bscon see bscon_methy.R
setMethod(
    f= "bscon",
    signature(x = "gds.class"),
    definition = function(x){
        nodules <- ls.gdsn(x)
        if("QCmethylated"%in%nodules){
            green.Channel <- QCmethylated(x)
        } else {
            stop("Green channel QC data could not be found")
        }
        if("QCunmethylated"%in%nodules){
            red.Channel <- QCunmethylated(x)
        } else {
            stop("Red channel QC data could not be found")
        }
        QCrows <- QCrownames(x)
        bisulfite.green <- green.Channel[grep("(^B.*C.*)\\bI\\b.*", rownames(green.Channel)),] 
        bisulfite.red <- red.Channel[grep("(^B.*C.*)\\bI\\b.*", rownames(red.Channel)),]
        bsI.green <- bisulfite.green
        bsI.red <- bisulfite.red

        bsII.green <- green.Channel[grep("(^B.*C.*)\\bII\\b.*", rownames(green.Channel)),]    #  as above with II (subset of above)
        bsII.red <- red.Channel[grep("(^B.*C.*)\\bII\\b.*", rownames(red.Channel)),]
        if(nrow(bsI.green) > 11){ # 450K
          BSI.betas <- rbind(bsI.green[1:3,], bsI.red[7:9,])/((rbind(bsI.green[1:3,], bsI.red[7:9,])) + rbind(bsI.green[4:6,], bsI.red[10:12,]))
        } else { # EPIC (Skip the missing probe pair...)
          BSI.betas <- rbind(bsI.green[1:2,], bsI.red[6:7,])/((rbind(bsI.green[1:2,], bsI.red[6:7,])) + rbind(bsI.green[3:4,], bsI.red[ 8:9 ,]))
        }
        BSII.betas <- bsII.red/(bsII.red + bsII.green)
        apply(rbind(BSI.betas, BSII.betas), 2, median)*100
    }
)
setMethod(
    f = "pwod",
    signature(object = "gds.class"),
    definition = function(object, mul = 4){
        if(object$readonly) stop("gds in Read-Only mode, please reload!")
        history.submitted <- as.character(Sys.time())
        bet <- betas(object)
        pwod.gdsn(node = bet, mul)
        history.finished <- as.character(Sys.time())
        history.command <- "Filtered with pwod (bigmelon)"
        h <- data.frame(submitted = history.submitted,
                        finished = history.finished,
                        command = history.command,
                        stringsAsFactors=FALSE
                        )
        for(j in colnames(h)){
            h_coln <- j
            h_index_str <- paste("history/",j,sep="")
            h_child_n <- index.gdsn(object,h_index_str,silent=TRUE)
            append.gdsn(h_child_n, val=h[,h_coln])
        }
    }
)

#dmrse <- function(betas, idmr=iDMR)
setMethod(
    f = "dmrse",
    signature(betas = "gds.class"),
    definition = function(betas, idmr = iDMR()){ 
        dmrse(betas(betas))
        #object <- betas
        #betas <- betas(object)[idmr, , name = TRUE]
        #dmrse(betas, idmr)
    }
) #OK

setMethod(
    f = "dmrse",
    signature(betas = "gdsn.class"),
    definition = function(betas, idmr = iDMR()){
        object <- betas
        betas <- object[idmr, ,name = TRUE]
        dmrse(betas, idmr)
    }
)

#dmrse_row <- function(betas, idmr=iDMR)
setMethod(
    f = "dmrse_row",
    signature(betas = "gds.class"),
    definition = function(betas, idmr=iDMR()){
        dmrse_row(betas(betas))
#        object <- betas
#        betas <- betas(object)[idmr, ,name = TRUE]
#        dmrse_row(betas, idmr)
    }
) # AS - OK

setMethod(
    f = "dmrse_row",
    signature(betas = "gdsn.class"),
    definition = function(betas, idmr = iDMR()){
        object <- betas
        betas <- object[idmr, ,name = TRUE]
        dmrse_row( betas, idmr )
    }
)

setMethod(
    f = "dmrse_col",
    signature(betas = "gds.class"),
    definition = function(betas, idmr = iDMR()){
        dmrse_col(betas(betas))
        #object <- betas
        #betas <- betas(object)[idmr, ,name = TRUE]
        #dmrse_col(betas, idmr)
    }
) # AS - OK

setMethod(
    f = "dmrse_col",
    signature(betas = "gdsn.class"),
    definition=function(betas, idmr = iDMR()){
        object <- betas
        betas <- object[idmr, ,name = TRUE]
        dmrse_col(betas, idmr)
    }
)

#seabi <- function (bn, stop, sex, X){
setMethod( # Not mem eff # Method not working either!
    f = "seabi",
    signature(bn = "gds.class"),
    definition = function(bn, stop = 1, sex=pData(bn)$sex,
                            X = fData(bn)$CHR == "X" ){
        object<- bn
        betasobj  <- betas(object)[,]
        seabi( betasobj, stop, sex, X )
    }
) # AS - OK

#genki <- function(bn, g=getsnp(rownames(bn)), se=TRUE ){
setMethod(
    f = "genki",
    signature(bn = "gds.class"),
    definition = function(bn, se = TRUE){
        genki(betas(bn))
#        g <- wateRmelon::getsnp(rownames(object))
#        bn <- betas(object)[g, ,name = TRUE, drop = FALSE]
#        g <- 1:length(g)
#        genki(bn, g, se)
    }
) # AS - OK

setMethod(
    f= "genki",
    signature(bn="gdsn.class"),
    definition=function(bn, se = TRUE){
        object <- bn
        g <- getsnp(rownames(object))
        bn <- object[g, , name = TRUE, drop = FALSE]
        g <- 1:length(g)
        genki(bn, g, se)
    }
)

setGeneric("fot", function(x){standardGeneric("fot")})
setMethod(
    f='fot',
    signature(x='gds.class'),
    definition = function(x){
        fd <- fData(x)
        # Create ambiguous search for Design or Type in fData - to fix minfi normalisation...
        ds <- grep("(DESIGN|TYPE)", colnames(fd), ignore.case = TRUE)
        return(fd[,ds[1]])
    }
    )

setGeneric('predictSex', function(x, x.probes=NULL, pc=2, plot=T, irlba=T, center=F, scale.=F){standardGeneric('predictSex')})
setMethod(
    f = 'predictSex',
    signature(x = 'gds.class'),
    definition = function(x, x.probes, pc=2, plot=TRUE, irlba=TRUE, center=FALSE, scale. = FALSE){
    if(is.null(x.probes)) stop('Please provide an index for x chromosomes probes')
    predictSex(x = bigmelon::betas(x), x.probes=x.probes, pc, plot, irlba, center, scale.)
}
)

setMethod(
    f = 'predictSex',
    signature(x = 'gdsn.class'),
    definition = function(x, x.probes, pc=2, plot=TRUE, irlba=TRUE, center=FALSE, scale. = FALSE){
    if(is.null(x.probes)) stop('Please provide an index for x chromosomes probes')
    if(is.logical(x.probes)) x.probes <- which(x.probes)
    xdat <- na.omit(x[x.probes,])
    predictSex(x=xdat, x.probes = NULL, pc, plot, irlba, center, scale.)
}
)
TJGorrie/bigmelon documentation built on March 7, 2020, 3:23 a.m.