R/mcmc.2pno_alg.R

Defines functions .mcmc.person.2pno .mcmc.ic.2pl .mcmc.deviance.2pl .draw.itempars.2pl .draw.theta.2pl .draw.Z.2pl

## File Name: mcmc.2pno_alg.R
## File Version: 1.22


######################
# draw latent responses Z
.draw.Z.2pl <- function( aM, bM, theta, N, I, threshlow, threshupp ){
    # calculate means
    mij <- aM * theta - bM
    # simulate uniform data
    rij <- matrix( stats::runif( N*I ), nrow=N, ncol=I )
    # calculate corresponding value
    pl <- stats::pnorm( threshlow, mean=mij)
    pu <- stats::pnorm( threshupp, mean=mij)
    pij <- pl + (pu-pl)*rij
    # simulate Z
    Zij <- stats::qnorm( pij, mean=mij )
    return(Zij)
}

########################################
# draw theta
.draw.theta.2pl <- function( aM, bM, N, I, Z ){
    vtheta <- 1 / ( rowSums( aM^2 ) + 1  )
    mtheta <- rowSums( aM * ( Z + bM ) ) * vtheta
    theta <- stats::rnorm( N, mean=mtheta, sd=sqrt( vtheta ) )
#    v1 <- var(mtheta)
#    EAP.rel <- v1 / ( mean(vtheta) + v1 )
#    res <- list("theta"=theta, "EAP.rel"=EAP.rel )
    res <- list("theta"=theta )
    return(res)
            }

##########################################
# draw item parameters
.draw.itempars.2pl <- function( theta, Z, I, N, weights){
    #--------------
    # sampling without weights
    Xast <- as.matrix( cbind( theta, -1 ) )
    if ( is.null(weights) ){
#        Sigma <- solve( t(Xast) %*% Xast )
        Sigma <- solve( crossprod(Xast) )
        # calculate mean
#        mj <- Sigma %*% t(Xast) %*% Z
        mj <- Sigma %*% crossprod(Xast, Z )
        mj <- as.matrix( t(mj))
                        }
    #--------------
    # sampling with weights
    if ( ! is.null( weights ) ){
        # compute elements of Xast
        Xast11 <- sum( theta^2 * weights )
        Xast12 <- - sum( theta * weights )
        Xast22 <- sum( weights )
        # compute inverse of Xast
        Xastdet <- Xast11*Xast22 - Xast12^2
        Xastinv11 <- Xast22 / Xastdet
        Xastinv22 <- Xast11 / Xastdet
        Xastinv12 <- - Xast12 / Xastdet
        Sigma <- matrix( c(Xastinv11, Xastinv12, Xastinv12, Xastinv22), 2,2 )
        # compute t(Xast) %*% Z (weighted)
#        mj <- Sigma %*% t( Xast * weights ) %*% Z
        mj <- Sigma %*% crossprod( Xast * weights, Z )
        mj <- as.matrix( t(mj))
            }
    #--------------
    # draw item parameters
    ipars <- sirt_rmvnorm( I, sigma=Sigma ) + mj
    a <- ipars[,1]
    b <- ipars[,2]
    return( list( "a"=a, "b"=b) )
}


#################################################
# compute deviance
.mcmc.deviance.2pl <- function( aM, bM, theta, dat, dat.resp,
                weights, eps ){
    pij <- stats::pnorm( aM * theta - bM )
    llij <- log( dat.resp * ( dat*pij + ( 1-dat )*(1-pij) ) + eps )
    if ( is.null( weights ) ){ deviance <- -2*sum( llij ) }
    if ( ! is.null( weights ) ){
        deviance <- -2*sum( rowSums(llij) * weights )
                    }
    return(deviance)
                }

######################################################
# subfunction for calculating the DIC
.mcmc.ic.2pl <- function( a.chain, b.chain, theta.chain, N, I,
        dat, dat.resp, weights, eps,
        deviance.chain ){
    #************
    aM <- matrix( colMeans( a.chain ), nrow=N, ncol=I, byrow=TRUE )
    bM <- matrix( colMeans( b.chain ), nrow=N, ncol=I, byrow=TRUE )
    theta <- colMeans( theta.chain )
    Dhat <- .mcmc.deviance.2pl( aM, bM, theta, dat, dat.resp,
                weights, eps )
    Dbar <- mean( deviance.chain )
    pD <- Dbar - Dhat
    ic <- list( "Dhat"=Dhat, "Dbar"=Dbar, "pD"=pD, "DIC"=Dhat + 2*pD )
    return(ic)
        }
#######################################################



####################################################################
# calculate EAP reliability, person parameter EAPs
# and corresponding posterior SDs
.mcmc.person.2pno <- function( theta.chain, weights ){
    ###################
    # EAP reliability
        v1 <- stats::var( colMeans( theta.chain ) )
        if ( is.null(weights) ){ EAP.rel <- v1 / 1 }
        if ( ! is.null(weights) ){
                w1 <- weights / sum(weights )
                m1 <- colMeans( theta.chain )
                v1 <- sum( m1^2 * w1 ) - ( sum( m1*w1 ) )^2
                wM <- matrix( w1, nrow=nrow(theta.chain), ncol=ncol(theta.chain), byrow=TRUE )
                h1 <- rowSums( wM * theta.chain^2 ) - ( rowSums( wM * theta.chain ) )^2
                h1 <- mean(h1)
                EAP.rel <- v1 / h1
                        }
    ###################
    # person parameter estimates
    person <- data.frame( "EAP"=colMeans( theta.chain ),
                        "SD"=colSds(theta.chain) )
    # output
    res <- list( "EAP.rel"=EAP.rel, "person"=person )
    return(res)
            }
###############################################################
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.