R/mcmc.3pno.testlet_output.R

Defines functions .mcmc.person.3pno.testlet .mcmc.description.3pno.testlet .mcmc.list.3pno.testlet .mcmc.ic.3pno.testlet .mcmc.deviance.3pno.testlet

## File Name: mcmc.3pno.testlet_output.R
## File Version: 1.21

######################################################
# compute deviance
.mcmc.deviance.3pno.testlet <- function( aM, bM, a.testletM, theta,
        guess, gamma.testlet, testletgroups, dat, dat.resp,
        weights, eps, param)
{
    guessM <- matrix( guess, nrow=nrow(aM), ncol=length(guess) )
    gamma.testletM <- gamma.testlet[, testletgroups ]
    if (param==1){ tau.ni <- aM * theta + gamma.testletM + bM }
    if (param==2){ tau.ni <- aM * theta + aM*gamma.testletM + bM }
    if (param==3){ tau.ni <- aM * theta + a.testletM*gamma.testletM + bM }
    pij <- guessM + ( 1 - guessM )* stats::pnorm( tau.ni )
    llij <- log( dat.resp * ( dat*pij + ( 1-dat )*(1-pij) ) + eps )
    if ( is.null( weights ) ){ deviance <- -2*sum( llij ) }
    if ( ! is.null( weights ) ){
        deviance <- -2*sum( rowSums(llij) * weights )
    }
    return(deviance)
}

######################################################
# subfunction for calculating the DIC
.mcmc.ic.3pno.testlet <- function( a.chain, b.chain,
        a.testlet.chain, N, I,
        theta.chain, c.chain, gamma.testlet.chain, TT,
        testletgroups, dat, dat.resp, weights, eps, param,
        deviance.chain )
{
    aM <- matrix( colMeans( a.chain ), nrow=N, ncol=I, byrow=TRUE )
    bM <- matrix( colMeans( b.chain ), nrow=N, ncol=I, byrow=TRUE )
    if (param==3){
        a.testletM <- matrix( colMeans( a.testlet.chain ), nrow=N, ncol=I, byrow=TRUE )
    }
    theta <- colMeans( theta.chain )
    guess <- colMeans( c.chain )
    gamma.testlet <- colMeans( gamma.testlet.chain )
    gamma.testlet <- matrix( gamma.testlet, nrow=N, ncol=TT+1 )
    Dhat <- .mcmc.deviance.3pno.testlet( aM, bM, a.testletM, theta,
                    guess,    gamma.testlet, testletgroups, dat, dat.resp,
                    weights, eps, param )
    Dbar <- mean( deviance.chain )
    pD <- Dbar - Dhat
    ic <- list( "Dhat"=Dhat, "Dbar"=Dbar, "pD"=pD, "DIC"=Dhat + 2*pD )
    return(ic)
}
#################################################################
# output mcmc.list
.mcmc.list.3pno.testlet <- function( a.chain, b.chain, a.testlet.chain,
        I, deviance.chain, est.slope, c.chain, sigma.chain,
        est.guess, theta.chain, sigma.testlet.chain, TT,
        burnin, SV, save.theta, testletgroups, param )
{
    a <- a.chain
    b <- b.chain
    theta <- theta.chain
    N <- ncol(theta.chain )
    colnames(a) <- paste0("a[", 1:I, "]")
    colnames(b) <- paste0("b[", 1:I, "]")
    mcmcobj <- cbind( deviance.chain, b )
    colnames(mcmcobj)[1] <- "deviance"
    if ( est.slope ){
        mcmcobj <- cbind( mcmcobj, a )
    }
    if ( est.guess ){
        colnames(c.chain) <- paste0("c[", 1:I, "]")
        mcmcobj <- cbind( mcmcobj, c.chain )
    }
    if ( ! est.slope ){
        mcmcobj <- cbind( mcmcobj, sigma.chain )
        colnames(mcmcobj)[ncol(mcmcobj)] <- "sigma"
    }
    if ( param==3 ){
        colnames(a.testlet.chain) <- paste0("a.testlet[", 1:I, "]")
        ind <- which( testletgroups <=TT )
        mcmcobj <- cbind( mcmcobj, a.testlet.chain[,ind]  )
    }
    colnames(theta) <- paste0("theta[", 1:N, "]")
    if ( ( TT>0 ) & (param!=3 ) ){    # save only testlet effects if they are present
        colnames(sigma.testlet.chain) <- paste0("sigma.testlet[", 1:TT, "]")
        mcmcobj <- cbind( mcmcobj, sigma.testlet.chain )
    }

    #**** compute marginal effects
    if (TT>0){
        sigma.testlet.chain <- cbind( sigma.testlet.chain, 0 )
        ind <- which( testletgroups <=TT )
        # intercept parameters
        st2 <- sqrt( 1 + sigma.testlet.chain[, testletgroups[ind] ]^2 )
        b_marg <- b.chain[,ind] / st2
        colnames(b_marg) <- paste0("b_marg[", (1:I)[ind], "]")
        mcmcobj <- cbind( mcmcobj, b_marg  )
        # slope parameters
        a_marg <- a.chain[,ind] / st2
        colnames(a_marg) <- paste0("a_marg[", (1:I)[ind], "]")
        mcmcobj <- cbind( mcmcobj, a_marg  )
    }
    if (save.theta){ mcmcobj <- cbind( mcmcobj, theta ) }
    class(mcmcobj) <- "mcmc"
    attr(mcmcobj, "mcpar") <- c( burnin+1, burnin+SV, 1 )
    mcmcobj <- sirt_import_coda_as.mcmc.list( mcmcobj )
    res <- list( "mcmcobj"=mcmcobj, "theta"=theta )
    return(res)
}
#################################################################
# description
.mcmc.description.3pno.testlet <- function( TT, param, est.guess, est.slope)
{
    if ( est.guess ){ mod <- "3PNO" } else { mod <- "2PNO" }
    if ( (!est.guess)& (!est.slope) ){ mod <- "1PNO" }
    if (TT>0){
        description <- paste0( mod, " Testlet Model (param=", param, ")" )
    }
    if (TT==0){
        description <- paste0( mod," Model"  )
    }
    return(description)
}
##################################################################

####################################################################
# calculate EAP reliability, person parameter EAPs
# and corresponding posterior SDs
.mcmc.person.3pno.testlet <- function( theta.chain, weights, gamma.testlet.chain)
{
    #*** EAP reliability
    N <- ncol(theta.chain )
    v1 <- stats::var( colMeans( theta.chain ) )
    SV <- nrow(theta.chain)
    if ( is.null(weights) ){
        h1 <- ( rowSums( theta.chain^2 ) - ( N * rowMeans( theta.chain ) )^2 ) / N
        h1 <- mean(h1)
        EAP.rel <- v1 / h1
    }
    if ( ! is.null(weights) ){
        w1 <- weights / sum(weights )
        m1 <- colMeans( theta.chain )
        v1 <- sum( m1^2 * w1 ) - ( sum( m1*w1 ) )^2
        wM <- matrix( w1, nrow=nrow(theta.chain), ncol=ncol(theta.chain), byrow=TRUE )
        h1 <- rowSums( wM * theta.chain^2 ) - ( rowSums( wM * theta.chain ) )^2
        h1 <- mean(h1)
        EAP.rel <- v1 / h1
    }

    #*** person parameter estimates
    person <- data.frame( "EAP"=colMeans( theta.chain ),
                          "SD"=colSds(theta.chain) )
    # compute testlet effects
    TT <- ncol(gamma.testlet.chain) / N - 1
    if (TT>0){
        for (tt in 1:TT){
            gtc <- gamma.testlet.chain[, 1:N + (tt-1)*N ]
            person[, paste0("EAP.Testlet",tt)] <- colMeans(gtc)
            person[, paste0("SD.Testlet",tt)] <- colSds( gtc )
        }
    }
    # output
    res <- list( "EAP.rel"=EAP.rel, "person"=person )
    return(res)
}
###############################################################
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.