# estimators obtained by using updated TMLE algorithm (Diaz and vdl 2018, and setting all Q=0)
################################
## efficient influence functions
################################
.DcAIPW <- function(
n,
X,
Y,
Acol,
delta,
qfun,
gfun,
qfit,
gfits,
estimand,
bounded,
wt,
isbin=FALSE,
...
){
# define shifts
Xa <- .shift(X,Acol, -delta)
Xb <- .shift(X,Acol, delta)
#
gn <- gfun(X,Acol,gfits=gfits)
ga <- gfun(Xa,Acol,gfits=gfits)
gb <- gfun(Xb,Acol,gfits=gfits)
#
qinit = qfun(X, Acol,qfit=qfit)
qbinit = qfun(Xb, Acol,qfit=qfit)
#
#ga = .enforce_min_dens(ga,eps=1e-8)
Haw = .Haw(gn, ga, gb) # evaluated at A_i
#eqfb = predict(lm(y~., data.frame(y=qfb, X=X[,-Acol]))) # simple linear regression on W to get E_g[Q | W]
eqfb <- 0 # cancels out
dc1 <- Haw*(Y - qinit)
dc2 <- qbinit - eqfb
dc3 <- eqfb - Y*(estimand != "mean") # Y doesn't show up in Diaz,vdl 2012 b/c they are estimating mean Y|A+delta
as.vector(dc1 + dc2 + dc3)*wt
}
.DbAIPW <- function(
n,
X,
Y,
Acol,
delta,
qfun,
gfun,
qfit,
gfits,
estimand,
bounded,
wt,
isbin=FALSE,
...){
# define shifts
X0 <- .shift(X,Acol, -X[,Acol])
X1 <- .shift(X,Acol, (1-X[,Acol]))
g0 <- 1-gfun(NULL,Acol,gfits=gfits)
#
#OT = sl3::variable_type(type="binary", levels=c(0,max(X[,Acol])))
qinit = qfun(X, Acol,qfit=qfit)
q1init = qfun(X1, Acol,qfit=qfit)
q0init = qfun(X0, Acol,qfit=qfit)
#
#ga = .enforce_min_dens(ga,eps=1e-8)
Hawmat <- .Hawb(g0, delta, X, Acol, retcols=3)
Haw <- Hawmat[,1]
eqfb <- 0 # cancels out
dc1 <- Haw*(Y - qinit)
dc2 <- qinit - eqfb
dc3 <- delta*(q1init - q0init) + eqfb - Y*(estimand != "mean") # Y doesn't show up in Diaz,vdl 2012 b/c they are estimating mean Y|A+delta
as.vector(dc1 + dc2 + dc3)*wt
}
################################
#: estimating equations
################################
.MakeiAipwEst <- function(dphi){
#summary(fit <- lm(dphi~1))
est <- mean(dphi)
D <- dphi-est
avar = mean(D^2) # asymptotic variance
se = sqrt(avar)/sqrt(length(D))
c(est=est, se = se, z=est/se)
}
.EstEqAIPW <- function(n,
X,
Y,
whichcols=seq_len(ncol(X)),
delta,
qfun,
gfun,
qfit,
gfits,
estimand,
bounded=FALSE, # future use
wt=rep(1,n),
isbin=FALSE,
...){
if(length(whichcols>1)) {
isbin_vec <- apply(X[,whichcols, drop=FALSE], 2, function(x) length(unique(x))==2)
} else isbin_vec = length(unique(X[,whichcols]))==2
resmat <- matrix(NA, nrow=length(isbin_vec), ncol=3)
for(Acol in seq_len(length(isbin_vec))){
if(isbin_vec[Acol]){
#dphi <- .DbAIPW(n=n,X=X,Y=Y,Acol=Acol,delta=delta,qfun=qfun,gfun=gfun,qfit=qfit,gfits=gfits,estimand=estimand, bounded=bounded, wt=wt,isbin=isbin)
aipwfun = .DbAIPW
} else{
#dphi <- .DcAIPW(n=n,X=X,Y=Y,Acol=Acol,delta=delta,qfun=qfun,gfun=gfun,qfit=qfit,gfits=gfits,estimand=estimand, bounded=bounded, wt=wt,isbin=isbin)
aipwfun = .DcAIPW
}
dphi <- try(aipwfun(n=n,X=X,Y=Y,Acol=Acol,delta=delta,qfun=qfun,gfun=gfun,qfit=qfit,gfits=gfits,estimand=estimand, bounded=bounded, wt=wt,isbin=isbin))
if(inherits(dphi,"try-error")){
stop(paste("(vibr) Error in estimation for ", names(X)[Acol]))
}
tm <- .MakeiAipwEst(dphi)
resmat[Acol,] <- tm
}
colnames(resmat) <- names(tm)
rownames(resmat) <- names(X[,whichcols,drop=FALSE])
resmat <- data.frame(resmat)
resmat$p <- stats::pnorm(-abs(resmat$z))*2
resmat
}
################################
# expert wrappers
################################
.trained_aipw <- function(
obj,
X,
Y,
# whichcols = seq_len(ncol(X)),
delta,
qfun,
gfun,
estimand,
bounded,
updatetype # place holder here
){
fittable <- .EstEqAIPW(n=obj$n,X=X,Y=Y, whichcols=obj$whichcols,delta,qfun=.qfunction,gfun=.gfunction,qfit=obj$sl.qfit,gfits=obj$sl.gfits, estimand, bounded=FALSE,wt=obj$weights,isbin=obj$isbin)
res <- list(
res = fittable,
qfit = obj$sl.qfit,
gfits = obj$sl.gfits,
binomial = obj$isbin,
type = "AIPW",
weights=obj$weights
)
class(res) <- c("vibr_fit", class(res))
res
}
#' @export
.varimp_aipw <- function(
X,
Y,
V=NULL,
whichcols=seq_len(ncol(X)),
delta=0.1,
Y_learners=NULL,
Xdensity_learners=NULL,
Xbinary_learners=NULL,
verbose=TRUE,
estimand,
bounded=FALSE,
isbin=FALSE,
...){
obj = .prelims(X=X, Y=Y, V=V, whichcols=whichcols, delta, Y_learners, Xbinary_learners, Xdensity_learners, verbose=verbose,isbin=isbin, ...)
#res = .trained_aipw(obj,X,Y,delta,qfun,gfun,estimand,bounded,updatetype)
res = .trained_aipw(obj=obj,X=X,Y=Y,delta=delta,qfun=.qfunction,gfun=.gfunction,estimand=estimand,bounded=bounded,updatetype=NULL)
res
}
#' @importFrom future future value
#' @export
.varimp_aipw_boot <- function(X,
Y,
V=NULL,
whichcols=seq_len(ncol(X)),
delta=0.1,
Y_learners=NULL,
Xdensity_learners=NULL,
Xbinary_learners=NULL,
verbose=TRUE,
estimand="diff",
isbin=NULL,
bounded=FALSE,
B=100,
showProgress=TRUE,
...){
if(is.null(isbin)) isbin <- as.logical((length(unique(Y))==2))
est <- .varimp_aipw(X=X,Y=Y,V=V,whichcols=whichcols,delta,Y_learners,Xdensity_learners,Xbinary_learners,verbose,estimand,bounded,isbin=isbin,...)
rn <- rownames(est$res)
n = length(Y)
ee <- new.env()
for(b in 1:B){
#ridx <- sample(seq_len(n), n, replace=TRUE)
ridx <- .bootsample(n)
ee[[paste0("iter",b)]] <- future::future( {
if(showProgress) cat(".")
Xi = X[ridx,,drop=FALSE]
Yi = Y[ridx]
Vi = V[ridx,,drop=FALSE]
obj = .prelims(X=Xi, Y=Yi, V=Vi, whichcols=whichcols, delta, Y_learners, Xbinary_learners, Xdensity_learners, verbose=verbose,isbin=isbin, ...)
fittable <- .EstEqAIPW(n=obj$n,X=Xi,Y=Yi, whichcols=obj$whichcols,delta=delta,qfun=.qfunction,gfun=.gfunction,qfit=obj$sl.qfit,gfits=obj$sl.gfits, estimand=estimand,bounded=bounded,wt=obj$weights,isbin=obj$isbin)
fittable$est
}, seed=TRUE, lazy=TRUE)
}
bootests = do.call(rbind, as.list(future::value(ee)))
if(showProgress) cat("\n")
colnames(bootests) <- rn
if(verbose) cat("\n")
res <- list(
est = est,
boots = bootests,
binomial = isbin,
type = "AIPW"
)
class(res) <- c("vibr_bootfit", class(res))
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.