### Define Methods that can be inherited for all subclasses
### Idea: Coercion between *VIRTUAL* classes -- as() chooses "closest" classes
### ---- should also work e.g. for dense-triangular --> sparse-triangular !
##-> see als ./dMatrix.R, ./ddenseMatrix.R and ./lMatrix.R
setAs("ANY", "sparseMatrix", function(from) as(from, "CsparseMatrix"))
## If people did not use xtabs(), but table():
setAs("table", "sparseMatrix", function(from) {
if(length(dim(from)) != 2L)
stop("only 2-dimensional tables can be directly coerced to sparse matrices")
as(unclass(from), "CsparseMatrix")
})
setAs("sparseMatrix", "generalMatrix", as_gSparse)
setAs("sparseMatrix", "symmetricMatrix", as_sSparse)
setAs("sparseMatrix", "triangularMatrix", as_tSparse)
spMatrix <- function(nrow, ncol,
i = integer(), j = integer(), x = numeric())
{
dim <- c(as.integer(nrow), as.integer(ncol))
## The conformability of (i,j,x) with itself and with 'dim'
## is checked automatically by internal "validObject()" inside new(.):
kind <- .M.kind(x)
new(paste0(kind, "gTMatrix"), Dim = dim,
x = if(kind == "d") as.double(x) else x,
## our "Tsparse" Matrices use 0-based indices :
i = as.integer(i - 1L),
j = as.integer(j - 1L))
}
sparseMatrix <- function(i = ep, j = ep, p, x, dims, dimnames,
symmetric = FALSE, index1 = TRUE,
giveCsparse = TRUE, check = TRUE, use.last.ij = FALSE)
{
## Purpose: user-level substitute for most new(<sparseMatrix>, ..) calls
## Author: Douglas Bates, Date: 12 Jan 2009, based on Martin's version
if((m.i <- missing(i)) + (m.j <- missing(j)) + (m.p <- missing(p)) != 1)
stop("exactly one of 'i', 'j', or 'p' must be missing from call")
if(!m.p) {
p <- as.integer(p)
if((lp <- length(p)) < 1 || p[1] != 0 || any((dp <- p[-1] - p[-lp]) < 0))
stop("'p' must be a non-decreasing vector (0, ...)")
ep <- rep.int(seq_along(dp), dp)
}
## i and j are now both defined (via default = ep). Make them 1-based indices.
i1 <- as.logical(index1)[1]
i <- as.integer(i + !(m.i || i1))
j <- as.integer(j + !(m.j || i1))
## "minimal dimensions" from (i,j,p); no warnings from empty i or j :
dims.min <- suppressWarnings(c(max(i), max(j)))
if(anyNA(dims.min)) stop("NA's in (i,j) are not allowed")
if(missing(dims)) {
dims <- dims.min
} else { ## check dims
stopifnot(all(dims >= dims.min))
dims <- as.integer(dims)
}
sx <- if(symmetric) {
if(dims[1] != dims[2])
stop("symmetric matrix must be square")
"s"
} else "g"
isPat <- missing(x) ## <-> patter"n" Matrix
kx <- if(isPat) "n" else .M.kind(x)
r <- new(paste0(kx, sx, "TMatrix"))
r@Dim <- dims
if(symmetric && all(i >= j)) r@uplo <- "L" # else "U", the default
if(!isPat) {
if(kx == "d" && !is.double(x)) x <- as.double(x)
if(length(x) != (n <- length(i))) { ## recycle
if(length(x) != 1 && n %% length(x) != 0)
warning("length(i) is not a multiple of length(x)")
x <- rep_len(x, n)
}
if(use.last.ij && (id <- anyDuplicated(cbind(i,j), fromLast=TRUE))) {
i <- i[-id]
j <- j[-id]
x <- x[-id]
if(any(idup <- duplicated(cbind(i,j), fromLast=TRUE))) {
ndup <- -which(idup)
i <- i[ndup]
j <- j[ndup]
x <- x[ndup]
}
}
r@x <- x
}
r@i <- i - 1L
r@j <- j - 1L
if(!missing(dimnames))
r@Dimnames <- .fixupDimnames(dimnames)
if(check) validObject(r)
if(giveCsparse) as(r, "CsparseMatrix") else r
}
## "graph" coercions -- this needs the graph package which is currently
## ----- *not* required on purpose
## Note: 'undirected' graph <==> 'symmetric' matrix
## Use 'graph::' as it is not impoted into Matrix, and may only be loaded, not attached:
## Add some utils that may no longer be needed in future versions of the 'graph' package
graph.has.weights <- function(g) "weight" %in% names(graph::edgeDataDefaults(g))
graph.non.1.weights <- function(g) any(unlist(graph::edgeData(g, attr = "weight")) != 1)
graph.wgtMatrix <- function(g)
{
## Purpose: work around "graph" package's as(g, "matrix") bug
## ----------------------------------------------------------------------
## Arguments: g: an object inheriting from (S4) class "graph"
## ----------------------------------------------------------------------
## Author: Martin Maechler, based on Seth Falcon's code; Date: 12 May 2006
## MM: another buglet for the case of "no edges":
if(graph::numEdges(g) == 0) {
p <- length(nd <- graph::nodes(g))
return( matrix(0, p,p, dimnames = list(nd, nd)) )
}
## Usual case, when there are edges:
if(has.w <- graph.has.weights(g)) {
## graph.non.1.weights(g) :
w <- unlist(graph::edgeData(g, attr = "weight"))
has.w <- any(w != 1)
} ## now 'has.w' is TRUE iff there are weights != 1
## now 'has.w' is TRUE iff there are weights != 1
m <- as(g, "matrix")
## now is a 0/1 - matrix (instead of 0/wgts) with the 'graph' bug
if(has.w) { ## fix it if needed
tm <- t(m)
tm[tm != 0] <- w
t(tm)
}
else m
}
setAs("graphAM", "sparseMatrix",
function(from) {
symm <- graph::edgemode(from) == "undirected" && isSymmetric(from@adjMat)
## This is only ok if there are no weights...
if(graph.has.weights(from)) {
as(graph.wgtMatrix(from),
if(symm) "dsTMatrix" else "dgTMatrix")
}
else { ## no weights: 0/1 matrix -> logical
as(as(from, "matrix"),
if(symm) "nsTMatrix" else "ngTMatrix")
}
})
setAs("graph", "CsparseMatrix",
function(from) as(as(from, "graphNEL"), "CsparseMatrix"))
setAs("graph", "Matrix", function(from) as(from, "CsparseMatrix"))
setAs("graphNEL", "CsparseMatrix",
function(from) as(as(from, "TsparseMatrix"), "CsparseMatrix"))
graph2T <- function(from, use.weights =
graph.has.weights(from) && graph.non.1.weights(from)) {
nd <- graph::nodes(from); dnms <- list(nd,nd)
dm <- rep.int(length(nd), 2)
edge2i <- function(e) {
## return (0-based) row indices 'i'
rep.int(0:(dm[1]-1L), lengths(e))
}
if(use.weights) {
eWts <- graph::edgeWeights(from); names(eWts) <- NULL
i <- edge2i(eWts)
To <- unlist(lapply(eWts, names))
j <- as.integer(match(To,nd)) - 1L # columns indices (0-based)
## symm <- symm && <weights must also be symmetric>: improbable
## if(symm) new("dsTMatrix", .....) else
new("dgTMatrix", i = i, j = j, x = unlist(eWts), Dim = dm, Dimnames = dnms)
}
else { ## no weights: 0/1 matrix -> logical
edges <- lapply(from@edgeL[nd], "[[", "edges")
symm <- graph::edgemode(from) == "undirected"
if(symm)# each edge appears twice; keep upper triangle only
edges <- lapply(seq_along(edges), function(i) {e <- edges[[i]]; e[e >= i]})
i <- edge2i(edges)
j <- as.integer(unlist(edges)) - 1L # column indices (0-based)
## if(symm) { # symmetric: ensure upper triangle
## tmp <- i
## flip <- i > j
## i[flip] <- j[flip]
## j[flip] <- tmp[flip]
## new("nsTMatrix", i = i, j = j, Dim = dm, Dimnames = dnms, uplo = "U")
## } else {
## new("ngTMatrix", i = i, j = j, Dim = dm, Dimnames = dnms)
## }
new(if(symm) "nsTMatrix" else "ngTMatrix",
i = i, j = j, Dim = dm, Dimnames = dnms)# uplo = "U" is default
}
}
setAs("graphNEL", "TsparseMatrix", function(from) graph2T(from))
setAs("sparseMatrix", "graph", function(from) as(from, "graphNEL"))
setAs("sparseMatrix", "graphNEL",
## since have specific method for Tsparse below, 'from' is *not*,
## i.e. do not need to "uniquify" the T* matrix:
function(from) T2graph(as(from, "TsparseMatrix"), need.uniq=FALSE))
setAs("TsparseMatrix", "graphNEL", function(from) T2graph(from))
T2graph <- function(from, need.uniq = is_not_uniqT(from), edgemode = NULL) {
d <- dim(from)
if(d[1] != d[2])
stop("only square matrices can be used as incidence matrices for graphs")
n <- d[1]
if(n == 0) return(new("graphNEL"))
if(is.null(rn <- dimnames(from)[[1]]))
rn <- as.character(1:n)
if(need.uniq) ## Need to 'uniquify' the triplets!
from <- uniqTsparse(from)
if(is.null(edgemode))
edgemode <-
if(isSymmetric(from)) { # either "symmetricMatrix" or otherwise
##-> undirected graph: every edge only once!
if(!is(from, "symmetricMatrix")) {
## a general matrix which happens to be symmetric
## ==> remove the double indices
from <- tril(from)
}
"undirected"
} else {
"directed"
}
## every edge is there only once, either upper or lower triangle
ft1 <- cbind(rn[from@i + 1L], rn[from@j + 1L])
graph::ftM2graphNEL(ft1, W = if(.hasSlot(from,"x")) as.numeric(from@x), ## else NULL
V = rn, edgemode=edgemode)
}
### Subsetting -- basic things (drop = "missing") are done in ./Matrix.R
### FIXME : we defer to the "*gT" -- conveniently, but not efficient for gC !
## [dl]sparse -> [dl]gT -- treat both in one via superclass
## -- more useful when have "z" (complex) and even more
setMethod("[", signature(x = "sparseMatrix", i = "index", j = "missing",
drop = "logical"),
function (x, i,j, ..., drop) {
Matrix.msg("sp[i,m,l] : nargs()=",nargs(), .M.level = 2)
cld <- getClassDef(class(x))
na <- nargs()
x <- if(na == 4) as(x, "TsparseMatrix")[i, , drop=drop]
else if(na == 3) as(x, "TsparseMatrix")[i, drop=drop]
else ## should not happen
stop("Matrix-internal error in <sparseM>[i,,d]; please report")
##
## try_as(x, c(cl, sub("T","C", viaCl)))
if(is(x, "Matrix") && extends(cld, "CsparseMatrix"))
as(x, "CsparseMatrix") else x
})
setMethod("[", signature(x = "sparseMatrix", i = "missing", j = "index",
drop = "logical"),
function (x,i,j, ..., drop) {
Matrix.msg("sp[m,i,l] : nargs()=",nargs(), .M.level = 2)
cld <- getClassDef(class(x))
##> why should this be needed; can still happen in <Tsparse>[..]:
##> if(!extends(cld, "generalMatrix")) x <- as(x, "generalMatrix")
## viaCl <- paste0(.M.kind(x, cld), "gTMatrix")
x <- as(x, "TsparseMatrix")[, j, drop=drop]
##simpler than x <- callGeneric(x = as(x, "TsparseMatrix"), j=j, drop=drop)
if(is(x, "Matrix") && extends(cld, "CsparseMatrix"))
as(x, "CsparseMatrix") else x
})
setMethod("[", signature(x = "sparseMatrix",
i = "index", j = "index", drop = "logical"),
function (x, i, j, ..., drop) {
Matrix.msg("sp[i,i,l] : nargs()=",nargs(), .M.level = 2)
cld <- getClassDef(class(x))
## be smart to keep symmetric indexing of <symm.Mat.> symmetric:
##> doSym <- (extends(cld, "symmetricMatrix") &&
##> length(i) == length(j) && all(i == j))
##> why should this be needed; can still happen in <Tsparse>[..]:
##> if(!doSym && !extends(cld, "generalMatrix"))
##> x <- as(x, "generalMatrix")
## viaCl <- paste0(.M.kind(x, cld),
## if(doSym) "sTMatrix" else "gTMatrix")
x <- as(x, "TsparseMatrix")[i, j, drop=drop]
if(is(x, "Matrix") && extends(cld, "CsparseMatrix"))
as(x, "CsparseMatrix") else x
})
### "[<-" : -----------------
## setReplaceMethod("[", .........)
## -> ./Tsparse.R
## & ./Csparse.R & ./Rsparse.R {those go via Tsparse}
## x[] <- value :
setReplaceMethod("[", signature(x = "sparseMatrix", i = "missing", j = "missing",
value = "ANY"),## double/logical/...
function (x, i,j,..., value) {
if(all0(value)) { # be faster
cld <- getClassDef(class(x))
x <- diagU2N(x, cl = cld)
for(nm in intersect(nsl <- names(cld@slots),
c("x", "i","j", "factors")))
length(slot(x, nm)) <- 0L
if("p" %in% nsl)
x@p <- rep.int(0L, ncol(x)+1L)
} else { ## typically non-sense: assigning to full sparseMatrix
x[TRUE] <- value
}
x
})
## Do not use as.vector() (see ./Matrix.R ) for sparse matrices :
setReplaceMethod("[", signature(x = "sparseMatrix", i = "missing", j = "ANY",
value = "sparseMatrix"),
function (x, i, j, ..., value)
callGeneric(x=x, , j=j, value = as(value, "sparseVector")))
setReplaceMethod("[", signature(x = "sparseMatrix", i = "ANY", j = "missing",
value = "sparseMatrix"),
function (x, i, j, ..., value)
if(nargs() == 3)
callGeneric(x=x, i=i, value = as(value, "sparseVector"))
else
callGeneric(x=x, i=i, , value = as(value, "sparseVector")))
setReplaceMethod("[", signature(x = "sparseMatrix", i = "ANY", j = "ANY",
value = "sparseMatrix"),
function (x, i, j, ..., value)
callGeneric(x=x, i=i, j=j, value = as(value, "sparseVector")))
### --- print() and show() methods ---
.formatSparseSimple <- function(m, asLogical=FALSE, digits=NULL,
col.names, note.dropping.colnames = TRUE,
dn=dimnames(m))
{
stopifnot(is.logical(asLogical))
if(asLogical)
cx <- array("N", dim(m), dimnames=dn)
else { ## numeric (or --not yet implemented-- complex):
cx <- apply(m, 2, format, digits=digits)
if(is.null(dim(cx))) {# e.g. in 1 x 1 case
dim(cx) <- dim(m)
dimnames(cx) <- dn
} else ## workaround bug in apply() which has lost row names:
if(getRversion() < "3.2" && !is.null(names(dn))) {
if(is.null(dimnames(cx)))
dimnames(cx) <- dn
else
names(dimnames(cx)) <- names(dn)
}
}
if (missing(col.names))
col.names <- {
if(!is.null(cc <- getOption("sparse.colnames")))
cc
else if(is.null(dn[[2]]))
FALSE
else { # has column names == dn[[2]]
ncol(m) < 10
}
}
if(identical(col.names, FALSE))
cx <- emptyColnames(cx, msg.if.not.empty = note.dropping.colnames)
else if(is.character(col.names)) {
stopifnot(length(col.names) == 1)
cn <- col.names
switch(substr(cn, 1,3),
"abb" = {
iarg <- as.integer(sub("^[^0-9]*", '', cn))
colnames(cx) <- abbreviate(colnames(cx), minlength = iarg)
},
"sub" = {
iarg <- as.integer(sub("^[^0-9]*", '', cn))
colnames(cx) <- substr(colnames(cx), 1, iarg)
},
stop(gettextf("invalid 'col.names' string: %s", cn), domain=NA))
}
## else: nothing to do for col.names == TRUE
cx
}## .formatSparseSimple
### NB: Want this to work also for logical or numeric traditional matrix 'x':
formatSparseM <- function(x, zero.print = ".", align = c("fancy", "right"),
m = as(x,"matrix"), asLogical=NULL, uniDiag=NULL,
digits=NULL, cx, iN0, dn = dimnames(m))
{
cld <- getClassDef(class(x))
if(is.null(asLogical)) {
binary <- extends(cld,"nsparseMatrix") || extends(cld, "indMatrix")# -> simple T / F
asLogical <- { binary || extends(cld,"lsparseMatrix") ||
extends(cld,"matrix") && is.logical(x) }
# has NA and (non-)structural FALSE
}
if(missing(cx))
cx <- .formatSparseSimple(m, asLogical=asLogical, digits=digits, dn=dn)
if(is.null(d <- dim(cx))) {# e.g. in 1 x 1 case
d <- dim(cx) <- dim(m)
dimnames(cx) <- dn
}
if(missing(iN0))
iN0 <- 1L + .Call(m_encodeInd, non0ind(x, cld), di = d, FALSE, FALSE)
## ne <- length(iN0)
if(asLogical) {
cx[m] <- "|"
if(!extends(cld, "sparseMatrix"))
x <- as(x,"sparseMatrix")
if(anyFalse(x@x)) { ## any (x@x == FALSE)
## Careful for *non-sorted* Tsparse, e.g. from U-diag
if(extends(cld, "TsparseMatrix")) {
## have no "fast uniqTsparse():
x <- as(x, "CsparseMatrix")
cld <- getClassDef(class(x))
}
F. <- is0(x@x) # the 'FALSE' ones
### FIXME: have iN0 already above -- *really* need the following ??? --FIXME--
ij <- non0.i(x, cld, uniqT=FALSE)
if(extends(cld, "symmetricMatrix")) {
## also get "other" triangle
notdiag <- ij[,1] != ij[,2] # but not the diagonals again
ij <- rbind(ij, ij[notdiag, 2:1], deparse.level=0)
F. <- c(F., F.[notdiag])
}
iN0 <- 1L + .Call(m_encodeInd, ij, di = d, FALSE, FALSE)
cx[iN0[F.]] <- ":" # non-structural FALSE (or "o", "," , "-" or "f")?
}
}
else if(match.arg(align) == "fancy" && !is.integer(m)) {
fi <- apply(m, 2, format.info) ## fi[3,] == 0 <==> not expo.
## now 'format' the zero.print by padding it with ' ' on the right:
## case 1: non-exponent: fi[2,] + as.logical(fi[2,] > 0)
## the column numbers of all 'zero' entries -- (*large*)
cols <- 1L + (0:(prod(d)-1L))[-iN0] %/% d[1]
pad <-
ifelse(fi[3,] == 0,
fi[2,] + as.logical(fi[2,] > 0),
## exponential:
fi[2,] + fi[3,] + 4)
## now be efficient ; sprintf() is relatively slow
## and pad is much smaller than 'cols'; instead of "simply"
## zero.print <- sprintf("%-*s", pad[cols] + 1, zero.print)
if(any(doP <- pad > 0)) { #
## only pad those that need padding - *before* expanding
z.p.pad <- rep.int(zero.print, length(pad))
z.p.pad[doP] <- sprintf("%-*s", pad[doP] + 1, zero.print)
zero.print <- z.p.pad[cols]
}
else
zero.print <- rep.int(zero.print, length(cols))
} ## else "right" : nothing to do
if(!asLogical && isTRUE(uniDiag)) { ## use "I" in diagonal -- pad correctly
if(any(diag(x) != 1))
stop("uniDiag=TRUE, but not all diagonal entries are 1")
D <- diag(cx) # use
if(any((ir <- regexpr("1", D)) < 0)) {
warning("uniDiag=TRUE, not all entries in diagonal coded as 1")
} else {
ir <- as.vector(ir)
nD <- nchar(D, "bytes")
## replace "1..." by "I " (I plus blanks)
substr(D, ir, nD) <- sprintf("I%*s", nD - ir, "")
diag(cx) <- D
}
}
cx[-iN0] <- zero.print
cx
}## formatSparseM()
## utility used inside sparseMatrix print()ing which might be useful
## outside the Matrix package:
formatSpMatrix <- function(x, digits = NULL, # getOption("digits"),
maxp = 1e9, # ~ 1/2 * .Machine$integer.max, ## getOption("max.print"),
cld = getClassDef(class(x)), zero.print = ".",
col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
align = c("fancy", "right"))
{
stopifnot(extends(cld, "sparseMatrix"))
validObject(x) # have seen seg.faults for invalid objects
d <- dim(x)
unitD <- extends(cld, "triangularMatrix") && x@diag == "U"
## Will note it is *unit*-diagonal by using "I" instead of "1"
if(unitD) {
if(extends(cld, "CsparseMatrix"))
x <- .Call(Csparse_diagU2N, x)
else if(extends(cld, "TsparseMatrix"))
x <- .Call(Tsparse_diagU2N, x)
else {
kind <- .M.kind(x, cld)
x <- .Call(Tsparse_diagU2N,
as(as(x, paste0(kind, "Matrix")), "TsparseMatrix"))
cld <- getClassDef(class(x))
}
}
if(prod(d) > maxp) { # "Large" => will be "cut"
## only coerce to dense that part which won't be cut :
nr <- maxp %/% d[2]
m <- as(x[1:max(1, nr), ,drop=FALSE], "matrix")
} else {
m <- as(x, "matrix")
}
dn <- dimnames(m) ## will be === dimnames(cx)
binary <- extends(cld,"nsparseMatrix") || extends(cld, "indMatrix") # -> simple T / F
logi <- binary || extends(cld,"lsparseMatrix") # has NA and (non-)structural FALSE
cx <- .formatSparseSimple(m, asLogical = logi, digits=digits,
col.names=col.names,
note.dropping.colnames=note.dropping.colnames, dn=dn)
if(is.logical(zero.print))
zero.print <- if(zero.print) "0" else " "
if(binary) {
cx[!m] <- zero.print
cx[m] <- "|"
} else { # non-binary ==> has 'x' slot
## show only "structural" zeros as 'zero.print', not all of them..
## -> cannot use 'm' alone
d <- dim(cx)
ne <- length(iN0 <- 1L + .Call(m_encodeInd, non0ind(x, cld),
di = d, FALSE, FALSE))
if(0 < ne && (logi || ne < prod(d))) {
cx <- formatSparseM(x, zero.print, align, m=m,
asLogical = logi, uniDiag = unitD & uniDiag,
digits=digits, cx=cx, iN0=iN0, dn=dn)
} else if (ne == 0)# all zeroes
cx[] <- zero.print
}
cx
}## formatSpMatrix()
## FIXME(?) -- ``merge this'' (at least ``synchronize'') with
## - - - prMatrix() from ./Auxiliaries.R
## FIXME: prTriang() in ./Auxiliaries.R should also get align = "fancy"
##
printSpMatrix <- function(x, digits = NULL, # getOption("digits"),
maxp = getOption("max.print"),
cld = getClassDef(class(x)), zero.print = ".",
col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
col.trailer = '', align = c("fancy", "right"))
{
stopifnot(extends(cld, "sparseMatrix"))
cx <- formatSpMatrix(x, digits=digits, maxp=maxp, cld=cld,
zero.print=zero.print, col.names=col.names,
note.dropping.colnames=note.dropping.colnames,
uniDiag=uniDiag, align=align)
if(col.trailer != '')
cx <- cbind(cx, col.trailer, deparse.level = 0)
## right = TRUE : cheap attempt to get better "." alignment
print(cx, quote = FALSE, right = TRUE, max = maxp)
invisible(x)
} ## printSpMatrix()
##' The "real" show() / print() method, calling the above printSpMatrix():
printSpMatrix2 <- function(x, digits = NULL, # getOption("digits"),
maxp = getOption("max.print"), zero.print = ".",
col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
suppRows = NULL, suppCols = NULL,
col.trailer = if(suppCols) "......" else "",
align = c("fancy", "right"),
width = getOption("width"), fitWidth = TRUE)
{
d <- dim(x)
cl <- class(x)
cld <- getClassDef(cl)
xtra <- if(extends(cld, "triangularMatrix") && x@diag == "U")
" (unitriangular)" else ""
cat(sprintf('%d x %d sparse Matrix of class "%s"%s\n',
d[1], d[2], cl, xtra))
setW <- !missing(width) && width > getOption("width")
if(setW) {
op <- options(width = width) ; on.exit( options(op) ) }
if((identical(suppRows,FALSE) && identical(suppCols, FALSE)) ||
(!isTRUE(suppRows) && !isTRUE(suppCols) && prod(d) <= maxp))
{ ## "small matrix" and supp* not TRUE : no rows or columns are suppressed
if(missing(col.trailer) && is.null(suppCols))
suppCols <- FALSE # for 'col.trailer'
printSpMatrix(x, cld=cld, digits=digits, maxp=maxp,
zero.print=zero.print, col.names=col.names,
note.dropping.colnames=note.dropping.colnames, uniDiag=uniDiag,
col.trailer=col.trailer, align=align)
}
else { ## d[1] > maxp / d[2] >= nr : -- this needs [,] working:
validObject(x)
sTxt <- c(" ", gettext(
"in show(); maybe adjust 'options(max.print= *, width = *)'"),
"\n ..............................\n")
useW <- width - (format.info(d[1], digits=digits)[1] + 3+1)
## == width - space for the largest row label : "[<last>,] "
## Suppress rows and/or columns in printing ...
## ---------------------------------------- but which exactly depends on format
## Determining number of columns - first assuming all zeros : ". . "..: 2 chars/column
## i.e., we get the *maximal* numbers of columns to keep, nc :
if(is.null(suppCols)) # i.e., "it depends" ..
suppCols <- (d[2] * 2 > useW) # used in 'col.trailer' default
nCc <- 1 + nchar(col.trailer, "width")
if(suppCols) {
nc <- (useW - nCc) %/% 2
x <- x[ , 1:nc, drop = FALSE]
} else
nc <- d[2]
nr <- maxp %/% nc # if nc becomes smaller, nr will become larger (!)
if(is.null(suppRows)) suppRows <- (nr < d[1])
if(suppRows) {
n2 <- ceiling(nr / 2)
if(fitWidth) {
## one iteration of improving the width, by "fake printing" :
cM <- formatSpMatrix(x[seq_len(min(d[1], max(1, n2))), , drop = FALSE],
digits=digits, maxp=maxp, zero.print=zero.print,
col.names=col.names, align=align,
note.dropping.colnames=note.dropping.colnames, uniDiag=FALSE)
## width needed (without the 'col.trailer's 'nCc'):
matW <- nchar(capture.output(print(cM, quote=FALSE, right=FALSE))[[1]])
needW <- matW + (if(suppCols) nCc else 0)
if(needW > useW) { ## need more width
op <- options(width = width+(needW-useW))
if(!setW) on.exit( options(op) )
}
}
printSpMatrix(x[seq_len(min(d[1], max(1, n2))), , drop=FALSE],
digits=digits, maxp=maxp,
zero.print=zero.print, col.names=col.names,
note.dropping.colnames=note.dropping.colnames, uniDiag=uniDiag,
col.trailer = col.trailer, align=align)
suppTxt <- gettext(if(suppCols) "suppressing columns and rows" else "suppressing rows")
cat("\n ..............................",
"\n ........", suppTxt, sTxt, "\n", sep='')
## tail() automagically uses "[..,]" rownames:
printSpMatrix(tail(x, max(1, nr-n2)),
digits=digits, maxp=maxp,
zero.print=zero.print, col.names=col.names,
note.dropping.colnames=note.dropping.colnames, uniDiag=FALSE,
col.trailer = col.trailer, align=align)
}
else if(suppCols) {
printSpMatrix(x[ , 1:nc , drop = FALSE],
digits=digits, maxp=maxp,
zero.print=zero.print, col.names=col.names,
note.dropping.colnames=note.dropping.colnames, uniDiag=uniDiag,
col.trailer = col.trailer, align=align)
cat("\n .....", gettext("suppressing columns"), sTxt, sep='')
}
else stop("logic programming error in printSpMatrix2(), please report")
invisible(x)
}
} ## printSpMatrix2 ()
setMethod("format", signature(x = "sparseMatrix"), formatSpMatrix)
setMethod("print", signature(x = "sparseMatrix"), printSpMatrix2)
setMethod("show", signature(object = "sparseMatrix"),
function(object) printSpMatrix2(object))
## For very large and very sparse matrices, the above show()
## is not really helpful; Use summary() as an alternative:
setMethod("summary", signature(object = "sparseMatrix"),
function(object, ...) {
d <- dim(object)
T <- as(object, "TsparseMatrix")
## return a data frame (int, int, {double|logical|...}) :
r <- if(is(object,"nsparseMatrix"))
data.frame(i = T@i + 1L, j = T@j + 1L)
else data.frame(i = T@i + 1L, j = T@j + 1L, x = T@x)
attr(r, "header") <-
sprintf('%d x %d sparse Matrix of class "%s", with %d entries',
d[1], d[2], class(object), length(T@i))
## use ole' S3 technology for such a simple case
class(r) <- c("sparseSummary", class(r))
r
})
print.sparseSummary <- function (x, ...) {
cat(attr(x, "header"),"\n")
print.data.frame(x, ...)
invisible(x)
}
### FIXME [from ../TODO ]: Use cholmod_symmetry() --
## Possibly even use 'option' as argument here for fast check to use sparse solve !!
##' This case should be particularly fast
setMethod("isSymmetric", signature(object = "dgCMatrix"),
function(object, tol = 100*.Machine$double.eps, ...)
isTRUE(all.equal(.dgC.0.factors(object), t(object), tolerance = tol, ...)))
setMethod("isSymmetric", signature(object = "sparseMatrix"),
function(object, tol = 100*.Machine$double.eps, ...) {
## pretest: is it square?
d <- dim(object)
if(d[1] != d[2]) return(FALSE)
## else slower test using t() --
## FIXME (for tol = 0): use cholmod_symmetry(A, 1, ...)
## for tol > 0 should modify cholmod_symmetry(..) to work with tol
## or slightly simpler, rename and export is_sym() in ../src/cs_utils.c
if (is(object, "dMatrix"))
## use gC; "T" (triplet) is *not* unique!
isTRUE(all.equal(.as.dgC.0.factors( object),
.as.dgC.0.factors(t(object)),
tolerance = tol, ...))
else if (is(object, "lMatrix"))
## test for exact equality; FIXME(?): identical() too strict?
identical(as( object, "lgCMatrix"),
as(t(object), "lgCMatrix"))
else if (is(object, "nMatrix"))
## test for exact equality; FIXME(?): identical() too strict?
identical(as( object, "ngCMatrix"),
as(t(object), "ngCMatrix"))
else stop("not yet implemented")
})
setMethod("isTriangular", signature(object = "CsparseMatrix"), isTriC)
setMethod("isTriangular", signature(object = "TsparseMatrix"), isTriT)
setMethod("isDiagonal", signature(object = "sparseMatrix"),
function(object) {
d <- dim(object)
if(d[1] != d[2]) return(FALSE)
## else
gT <- as(object, "TsparseMatrix")
all(gT@i == gT@j)
})
setMethod("determinant", signature(x = "sparseMatrix", logarithm = "missing"),
function(x, logarithm, ...)
determinant(x, logarithm = TRUE, ...))
setMethod("determinant", signature(x = "sparseMatrix", logarithm = "logical"),
function(x, logarithm = TRUE, ...)
determinant(as(x,"dsparseMatrix"), logarithm, ...))
setMethod("Cholesky", signature(A = "sparseMatrix"),
function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
Cholesky(as(A, "CsparseMatrix"),
perm=perm, LDL=LDL, super=super, Imult=Imult, ...))
setMethod("diag", signature(x = "sparseMatrix"),
function(x, nrow, ncol) diag(as(x, "CsparseMatrix")))
setMethod("dim<-", signature(x = "sparseMatrix", value = "ANY"),
function(x, value) {
if(!is.numeric(value) || length(value) != 2)
stop("dim(.) value must be numeric of length 2")
if(prod(dim(x)) != prod(value <- round(value))) # *not* as.integer !
stop("dimensions don't match the number of cells")
## be careful to keep things sparse
r <- spV2M(as(x, "sparseVector"), nrow=value[1], ncol=value[2])
## r now is "dgTMatrix"
if(is(x, "CsparseMatrix")) as(r, "CsparseMatrix") else r
})
setMethod("norm", signature(x = "sparseMatrix", type = "character"),
function(x, type, ...) {
type <- toupper(substr(type[1], 1, 1))
switch(type, ## max(<empty>, 0) |--> 0
"O" = ,
"1" = max(colSums(abs(x)), 0), ## One-norm (L_1)
"I" = max(rowSums(abs(x)), 0), ## L_Infinity
"F" = sqrt(sum(x^2)), ## Frobenius
"M" = max(abs(x), 0), ## Maximum modulus of all
## otherwise:
stop("invalid 'type'"))
})
## FIXME: need a version of LAPACK's rcond() algorithm, using sparse-arithmetic
setMethod("rcond", signature(x = "sparseMatrix", norm = "character"),
function(x, norm, useInv=FALSE, ...) {
## as workaround, allow use of 1/(norm(A) * norm(solve(A)))
if(!identical(FALSE,useInv)) {
Ix <- if(isTRUE(useInv)) solve(x) else
if(is(useInv, "Matrix")) useInv
return( 1/(norm(x, type=norm) * norm(Ix, type=norm)) )
}
## else
d <- dim(x)
## FIXME: qr.R(qr(.)) warns about differing R (permutation!)
## really fix qr.R() *or* go via dense even in those cases
rcond(if(d[1] == d[2]) {
warning("rcond(.) via sparse -> dense coercion")
as(x, "denseMatrix")
} else if(d[1] > d[2]) qr.R(qr(x)) else qr.R(qr(t(x))),
norm = norm, ...)
})
setMethod("cov2cor", signature(V = "sparseMatrix"),
function(V) {
## like stats::cov2cor() but making sure all matrices stay sparse
p <- (d <- dim(V))[1]
if (p != d[2])
stop("'V' is not a *square* matrix")
if(!is(V, "dMatrix"))
V <- as(V, "dMatrix")# actually "dsparseMatrix"
Is <- sqrt(1/diag(V))
if (any(!is.finite(Is))) ## original had 0 or NA
warning("diag(.) had 0 or NA entries; non-finite result is doubtful")
Is <- Diagonal(x = Is)
r <- Is %*% V %*% Is
r[cbind(1:p,1:p)] <- 1 # exact in diagonal
as(r, "symmetricMatrix")
})
setMethod("is.na", signature(x = "sparseMatrix"),## NB: nsparse* have own method!
function(x) {
if(any((inax <- is.na(x@x)))) {
cld <- getClassDef(class(x))
if(extends(cld, "triangularMatrix") && x@diag == "U")
inax <- is.na((x <- .diagU2N(x, cld))@x)
r <- as(x, "lMatrix") # will be "lsparseMatrix" - *has* x slot
r@x <- if(length(inax) == length(r@x)) inax else is.na(r@x)
if(!extends(cld, "CsparseMatrix"))
r <- as(r, "CsparseMatrix")
as(.Call(Csparse_drop, r, 0), "nMatrix") # a 'pattern matrix
}
else is.na_nsp(x)
})
## all.equal(): similar to all.equal_Mat() in ./Matrix.R ;
## ----------- eventually defer to "sparseVector" methods:
setMethod("all.equal", c(target = "sparseMatrix", current = "sparseMatrix"),
function(target, current, check.attributes = TRUE, ...)
{
msg <- attr.all_Mat(target, current, check.attributes=check.attributes, ...)
if(is.list(msg)) msg[[1]]
else .a.e.comb(msg,
all.equal(as(target, "sparseVector"), as(current, "sparseVector"),
check.attributes=check.attributes, ...))
})
setMethod("all.equal", c(target = "sparseMatrix", current = "ANY"),
function(target, current, check.attributes = TRUE, ...)
{
msg <- attr.all_Mat(target, current, check.attributes=check.attributes, ...)
if(is.list(msg)) msg[[1]]
else .a.e.comb(msg,
all.equal(as(target, "sparseVector"), current,
check.attributes=check.attributes, ...))
})
setMethod("all.equal", c(target = "ANY", current = "sparseMatrix"),
function(target, current, check.attributes = TRUE, ...)
{
msg <- attr.all_Mat(target, current, check.attributes=check.attributes, ...)
if(is.list(msg)) msg[[1]]
else .a.e.comb(msg,
all.equal(target, as(current, "sparseVector"),
check.attributes=check.attributes, ...))
})
setMethod("writeMM", "sparseMatrix",
function(obj, file, ...)
writeMM(as(obj, "CsparseMatrix"), as.character(file), ...))
### --- sparse model matrix, fac2sparse, etc ----> ./spModels.R
### xtabs(*, sparse = TRUE) ---> part of standard package 'stats' since R 2.10.0
##' @title Random Sparse Matrix
##' @param nrow,
##' @param ncol number of rows and columns, i.e., the matrix dimension
##' @param nnz number of non-zero entries
##' @param rand.x random number generator for 'x' slot
##' @param ... optionally further arguments passed to sparseMatrix()
##' @return a sparseMatrix of dimension (nrow, ncol)
##' @author Martin Maechler
##' @examples M1 <- rsparsematrix(1000, 20, nnz = 200)
##' summary(M1)
if(FALSE) ## better version below
rsparsematrix <- function(nrow, ncol, nnz,
rand.x = function(n) signif(rnorm(nnz), 2),
warn.nnz = TRUE, ...)
{
maxi.sample <- 2^31 # maximum n+1 for which sample(n) returns integer
stopifnot((nnz <- as.integer(nnz)) >= 0,
nrow >= 0, ncol >= 0, nnz <= nrow * ncol,
nrow < maxi.sample, ncol < maxi.sample)
## to ensure that nnz is strictly followed, must act on duplicated (i,j):
i <- sample.int(nrow, nnz, replace = TRUE)
j <- sample.int(ncol, nnz, replace = TRUE)
dim <- c(nrow, ncol)
it <- 0
while((it <- it+1) < 100 &&
anyDuplicated(n.ij <- encodeInd2(i, j, dim, checkBnds=FALSE))) {
m <- length(k.dup <- which(duplicated(n.ij)))
Matrix.msg(sprintf("%3g duplicated (i,j) pairs", m), .M.level = 2)
if(runif(1) <= 1/2)
i[k.dup] <- sample.int(nrow, m, replace = TRUE)
else
j[k.dup] <- sample.int(ncol, m, replace = TRUE)
}
if(warn.nnz && it == 100 && anyDuplicated(encodeInd2(i, j, dim, checkBnds=FALSE)))
warning("number of non zeros is smaller than 'nnz' because of duplicated (i,j)s")
sparseMatrix(i = i, j = j, x = rand.x(nnz), dims = dim, ...)
}
## No warn.nnz needed, as we sample the encoded (i,j) with*out* replacement:
rsparsematrix <- function(nrow, ncol, density,
nnz = round(density * maxE), symmetric = FALSE,
rand.x = function(n) signif(rnorm(nnz), 2), ...)
{
maxE <- if(symmetric) nrow*(nrow+1)/2 else nrow*ncol
stopifnot((nnz <- as.integer(nnz)) >= 0,
nrow >= 0, ncol >= 0, nnz <= maxE)
## sampling with*out* replacement (replace=FALSE !):
ijI <- -1L +
if(symmetric) sample(indTri(nrow, diag=TRUE), nnz)
else sample.int(maxE, nnz)
## i,j below correspond to ij <- decodeInd(code, nr) :
if(is.null(rand.x))
sparseMatrix(i = ijI %% nrow,
j = ijI %/% nrow,
index1 = FALSE, symmetric = symmetric, dims = c(nrow, ncol), ...)
else
sparseMatrix(i = ijI %% nrow,
j = ijI %/% nrow,
index1 = FALSE, symmetric = symmetric,
x = rand.x(nnz), dims = c(nrow, ncol), ...)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.