test_that("Valid BASiCS_MCMC output object", {
# Data example: spikes
set.seed(7)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
# Running the samples: spikes + no regression
set.seed(18)
Chain <- run_MCMC(
Data, N = 20, Thin = 2, Burn = 10,
Regression = FALSE, WithSpikes = TRUE,
PrintProgress = FALSE, StoreAdapt = TRUE,
StoreChains = TRUE)
expect_equal(Chain, readRDS("chain_.Rds"))
expect_equal(Chain, BASiCS_LoadChain(""))
# Checking parameter names
ParamNames <- c("mu", "delta", "phi", "s", "nu", "theta")
expect_equal(names(Chain@parameters), ParamNames)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
expect_equal(names(PostSummary@parameters), ParamNames)
# Running the samples: spikes + regression
set.seed(18)
Chain <- run_MCMC(
Data, N = 20, Thin = 2, Burn = 10,
Regression = TRUE, WithSpikes = TRUE,
PrintProgress = FALSE, StoreAdapt = TRUE,
StoreChains = TRUE)
expect_equal(Chain, readRDS("chain_.Rds"))
expect_equal(Chain, BASiCS_LoadChain(""))
# Checking parameter names
ParamNames <- c("mu", "delta", "phi", "s", "nu", "theta",
"beta", "sigma2", "epsilon", "designMatrix", "RBFLocations")
expect_equal(names(Chain@parameters), ParamNames)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
expect_equal(names(PostSummary@parameters), ParamNames[-(10:11)])
# Data example: no-spikes
set.seed(7)
Data <- makeExampleBASiCS_Data(WithSpikes = FALSE)
# Running the samples: no-spikes + no regression
set.seed(18)
Chain <- run_MCMC(
Data, N = 20, Thin = 2, Burn = 10,
Regression = FALSE, WithSpikes = FALSE,
PrintProgress = FALSE, StoreAdapt = TRUE,
StoreChains = TRUE)
expect_equal(Chain, readRDS("chain_.Rds"))
expect_equal(Chain, BASiCS_LoadChain(""))
# Checking parameter names
ParamNames <- c("mu", "delta", "s", "nu", "theta", "RefFreq")
expect_equal(names(Chain@parameters), ParamNames)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
expect_equal(names(PostSummary@parameters), ParamNames[-length(ParamNames)])
# Running the samples: no-spikes + regression
set.seed(18)
Chain <- run_MCMC(
Data, N = 20, Thin = 2, Burn = 10,
Regression = TRUE, WithSpikes = FALSE,
PrintProgress = FALSE, StoreAdapt = TRUE,
StoreChains = TRUE)
expect_equal(Chain, readRDS("chain_.Rds"))
expect_equal(Chain, BASiCS_LoadChain(""))
# Checking parameter names
ParamNames <- c("mu", "delta", "s", "nu", "theta",
"beta", "sigma2", "epsilon", "designMatrix", "RBFLocations", "RefFreq")
expect_equal(names(Chain@parameters), ParamNames)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
ind_names <- setdiff(
seq_along(ParamNames),
c(length(ParamNames) - 2, length(ParamNames) - 1, length(ParamNames))
)
expect_equal(
names(PostSummary@parameters),
ParamNames[ind_names]
)
file.remove("chain_.Rds")
file.remove("TableRef_.txt")
})
test_that("reading old files", {
set.seed(7)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
# Running the samples: spikes + no regression
set.seed(18)
Chain <- run_MCMC(
Data, N = 20, Thin = 2, Burn = 10,
Regression = FALSE, WithSpikes = TRUE)
lapply(c("mu", "delta", "nu", "s", "theta", "phi"),
function(n) {
write.table(
Chain@parameters[[n]],
file = paste0("chain_", n, "_.txt"),
sep = " "
)
}
)
expect_equal(Chain, BASiCS_LoadChain())
lapply(c("mu", "delta", "nu", "s", "theta", "phi"), function(n) {
file.remove(paste0("chain_", n, "_.txt"))
})
})
test_that("updating chains works", {
set.seed(7)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE)
# Running the samples: spikes + no regression
set.seed(18)
Chain <- run_MCMC(
Data, N = 20, Thin = 2, Burn = 10,
Regression = FALSE, WithSpikes = TRUE)
setClass(
"oldChain",
contains = NULL,
representation = representation(
mu = "matrix",
delta = "matrix",
nu = "matrix",
s = "matrix",
theta = "matrix",
phi = "matrix"
)
)
old <- new("oldChain",
mu = Chain@parameters$mu,
delta = Chain@parameters$delta,
nu = Chain@parameters$nu,
s = Chain@parameters$s,
theta = Chain@parameters$theta,
phi = Chain@parameters$phi
)
expect_equal(BASiCS:::.updateObject(old), Chain)
saveRDS(old, "chain_.Rds")
expect_equal(Chain, BASiCS_LoadChain())
file.remove("chain_.Rds")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.