tests/testthat/test_parameter_estimation_regression.R

test_that("Estimates match the given seed (spikes+regression)", {
  # Data example
  set.seed(15)
  Data <- makeExampleBASiCS_Data(WithSpikes = TRUE, WithBatch = TRUE)
  # Fixing starting values
  n <- ncol(Data)
  k <- 12
  PriorParam <- BASiCS_PriorParam(Data, k = 12)
  set.seed(2018)
  Start <- BASiCS:::.BASiCS_MCMC_Start(
    Data,
    PriorParam,
    WithSpikes = TRUE,
    Regression = TRUE
  )
  # Running the sampler
  set.seed(12)
  Chain <- run_MCMC(
    Data,
    N = 1000,
    Thin = 10,
    Burn = 500, 
    PrintProgress = FALSE,
    Regression = TRUE,
    Start = Start,
    PriorParam = PriorParam
  )
  # Calculating a posterior summary
  PostSummary <- Summary(Chain)
  
  # Checking parameter names
  ParamNamesC <- c("mu", "delta", "phi", "s", "nu", "theta",
                  "beta", "sigma2", "epsilon", "RBFLocations")
  ParamNamesS <- c("mu", "delta", "phi", "s", "nu", "theta",
                  "beta", "sigma2", "epsilon")
  expect_equal(names(Chain@parameters), ParamNamesC)
  expect_equal(names(PostSummary@parameters), ParamNamesS)
            
  # Check if parameter estimates match for the first 5 genes and cells
  Mu <- c(6.410, 11.549,  4.264,  3.762, 26.152)
  MuObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "mu")[1:5,1], 3))
  expect_equal(MuObs, Mu, tolerance = 1)
            
  Delta <- c(1.384, 0.499, 1.771, 1.482, 0.399)
  DeltaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, 
                                                   "delta")[1:5,1],3))
  expect_equal(DeltaObs, Delta, tolerance = 1)
            
  Phi <- c( 0.806, 1.455, 0.823, 1.075, 0.809)
  PhiObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "phi")[1:5,1], 3))
  expect_equal(PhiObs, Phi, tolerance = 1)
            
  S <- c(0.430, 1.003, 0.269, 0.184, 0.094)
  SObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "s")[1:5,1],3))
  expect_equal(SObs, S, tolerance = 1)
            
  Theta <- c( 0.374, 0.277)
  ThetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "theta")[,1], 3))
  expect_equal(ThetaObs, Theta, tolerance = 1)
  
  Beta <- c(0.139, -0.229,  0.251,  0.311,  0.357)
  BetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "beta")[1:5,1], 3))
  expect_equal(BetaObs, Beta, tolerance = 1)
  
  Sigma2 <- 0.358
  Sigma2Obs <- round(displaySummaryBASiCS(PostSummary, "sigma2")[1], 3)
  expect_equal(Sigma2Obs, Sigma2, tolerance = 1)
  
  # Obtaining denoised counts     
  DC <- BASiCS_DenoisedCounts(Data, Chain)
  
  # Checks for an arbitrary set of genes / cells
  DCcheck0 <- c(0.000, 9.489,  0.000, 22.140,  3.530)
  DCcheck <- as.vector(round(DC[1:5,1], 3))
  expect_equal(DCcheck, DCcheck0, tolerance = 1)
  
  # Obtaining denoised rates
  DR <- BASiCS_DenoisedRates(Data, Chain)
  
  # Checks for an arbitrary set of genes / cells
  DRcheck0 <- c( 30.135,  0.560,  2.617,  2.719,  4.591)
  DRcheck <- as.vector(round(DR[10,1:5], 3))
  expect_equal(DRcheck, DRcheck0, tolerance = 1)
})

test_that("Chain creation works when StoreAdapt=TRUE (spikes+regression)", {
  # Data example
  set.seed(18)
  Data <- makeExampleBASiCS_Data(WithSpikes = TRUE, WithBatch = TRUE)
  # Fixing starting values
  n <- ncol(Data)
  k <- 12
  PriorParam <- BASiCS_PriorParam(Data, k = k)
  set.seed(2018)
  Start <- BASiCS:::.BASiCS_MCMC_Start(
    Data,
    PriorParam,
    WithSpikes = TRUE,
    Regression = TRUE
  )

  # Running the sampler
  set.seed(12)
  Chain <- run_MCMC(
    Data,
    N = 8,
    Thin = 2,
    Burn = 4,
    PrintProgress = FALSE,
    Regression = TRUE,
    StoreAdapt = TRUE,
    Start = Start,
    PriorParam = PriorParam
  )
  expect_s4_class(Chain, "BASiCS_Chain")
})
catavallejos/BASiCS documentation built on March 27, 2024, 12:49 a.m.