test_that("Estimates match the given seed (spikes+regression)", {
# Data example
set.seed(15)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE, WithBatch = TRUE)
# Fixing starting values
n <- ncol(Data)
k <- 12
PriorParam <- BASiCS_PriorParam(Data, k = 12)
set.seed(2018)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
WithSpikes = TRUE,
Regression = TRUE
)
# Running the sampler
set.seed(12)
Chain <- run_MCMC(
Data,
N = 1000,
Thin = 10,
Burn = 500,
PrintProgress = FALSE,
Regression = TRUE,
Start = Start,
PriorParam = PriorParam
)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
# Checking parameter names
ParamNamesC <- c("mu", "delta", "phi", "s", "nu", "theta",
"beta", "sigma2", "epsilon", "RBFLocations")
ParamNamesS <- c("mu", "delta", "phi", "s", "nu", "theta",
"beta", "sigma2", "epsilon")
expect_equal(names(Chain@parameters), ParamNamesC)
expect_equal(names(PostSummary@parameters), ParamNamesS)
# Check if parameter estimates match for the first 5 genes and cells
Mu <- c(6.410, 11.549, 4.264, 3.762, 26.152)
MuObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "mu")[1:5,1], 3))
expect_equal(MuObs, Mu, tolerance = 1)
Delta <- c(1.384, 0.499, 1.771, 1.482, 0.399)
DeltaObs <- as.vector(round(displaySummaryBASiCS(PostSummary,
"delta")[1:5,1],3))
expect_equal(DeltaObs, Delta, tolerance = 1)
Phi <- c( 0.806, 1.455, 0.823, 1.075, 0.809)
PhiObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "phi")[1:5,1], 3))
expect_equal(PhiObs, Phi, tolerance = 1)
S <- c(0.430, 1.003, 0.269, 0.184, 0.094)
SObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "s")[1:5,1],3))
expect_equal(SObs, S, tolerance = 1)
Theta <- c( 0.374, 0.277)
ThetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "theta")[,1], 3))
expect_equal(ThetaObs, Theta, tolerance = 1)
Beta <- c(0.139, -0.229, 0.251, 0.311, 0.357)
BetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "beta")[1:5,1], 3))
expect_equal(BetaObs, Beta, tolerance = 1)
Sigma2 <- 0.358
Sigma2Obs <- round(displaySummaryBASiCS(PostSummary, "sigma2")[1], 3)
expect_equal(Sigma2Obs, Sigma2, tolerance = 1)
# Obtaining denoised counts
DC <- BASiCS_DenoisedCounts(Data, Chain)
# Checks for an arbitrary set of genes / cells
DCcheck0 <- c(0.000, 9.489, 0.000, 22.140, 3.530)
DCcheck <- as.vector(round(DC[1:5,1], 3))
expect_equal(DCcheck, DCcheck0, tolerance = 1)
# Obtaining denoised rates
DR <- BASiCS_DenoisedRates(Data, Chain)
# Checks for an arbitrary set of genes / cells
DRcheck0 <- c( 30.135, 0.560, 2.617, 2.719, 4.591)
DRcheck <- as.vector(round(DR[10,1:5], 3))
expect_equal(DRcheck, DRcheck0, tolerance = 1)
})
test_that("Chain creation works when StoreAdapt=TRUE (spikes+regression)", {
# Data example
set.seed(18)
Data <- makeExampleBASiCS_Data(WithSpikes = TRUE, WithBatch = TRUE)
# Fixing starting values
n <- ncol(Data)
k <- 12
PriorParam <- BASiCS_PriorParam(Data, k = k)
set.seed(2018)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
WithSpikes = TRUE,
Regression = TRUE
)
# Running the sampler
set.seed(12)
Chain <- run_MCMC(
Data,
N = 8,
Thin = 2,
Burn = 4,
PrintProgress = FALSE,
Regression = TRUE,
StoreAdapt = TRUE,
Start = Start,
PriorParam = PriorParam
)
expect_s4_class(Chain, "BASiCS_Chain")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.