#' Plot cluster heatmap.
#'
#' Plot mean kinetic profile for each transcriptional cluster and save plots to
#' file.
#'
#' @param object CellRouter object.
#' @param show character vector; selected trajectories.
#'
#' @return list; ggplot2 plots.
#'
#' @export
#' @docType methods
#' @rdname plotClusterHeatmap-methods
setGeneric("plotClusterHeatmap", function(object, show)
standardGeneric("plotClusterHeatmap"))
#' @rdname plotClusterHeatmap-methods
#' @aliases plotClusterHeatmap
setMethod("plotClusterHeatmap",
signature="CellRouter",
definition=function(object, show){
# Select clusters to show.
clusters <- object@clusters[show]
plots <- list()
for(trajectory in names(clusters)){
exprs <- clusters[[trajectory]][['exprs']]
clustering <- clusters[[trajectory]][['clustering']]
df <- data.frame(matrix(0, nrow = max(clustering), ncol = 501))
for(cluster in 1:max(clustering)){
x <- clustering[which(clustering == cluster)]
xx <- exprs[names(x), ]
xxx <- apply(xx, 2, mean)
df[cluster, ] <- scales::rescale(xxx, c(0,1))
}
colors <- c("navy", "yellow", "red")
matrix <- df
matrix$cluster <- rownames(matrix)
matrix.m <- reshape2::melt(matrix, id.var = "cluster")
matrix.m$cluster <- factor(rownames(df), levels=rev(rownames(df)))
# Create plot.
g <- ggplot2::ggplot(matrix.m, ggplot2::aes(variable, cluster)) +
ggplot2::geom_tile(ggplot2::aes(fill = value)) +
ggplot2::scale_fill_gradientn("", colours=colors) +
ggplot2::theme_bw() + ggplot2::xlab("CellRouter trajectory") +
ggplot2::ylab("") +
ggplot2::theme(legend.position="right", #axis.text.x = element_text(size=rel(1), angle=45, hjust=1),
axis.title.y = ggplot2::element_text(size = ggplot2::rel(0.3),
angle = 90),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.ticks = ggplot2::element_blank(),
panel.border =
ggplot2::element_rect(fill = NA,
colour = ggplot2::alpha('black', 1),
size=1)) +
ggplot2::ggtitle(trajectory) +
ggplot2::scale_x_discrete(expand = c(0, 0)) +
ggplot2::scale_y_discrete(expand = c(0, 0))
# Add plot to list.
plots[[trajectory]] <- g
}
return(plots)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.