#' Plot branch-specific kinetic patterns.
#'
#' Plot z-scores across specific trajectories.
#'
#' @param object CellRouter object.
#' @param direction character; plot genes up or down-regulated along
#' trajectories.
#' @param p1 character; trajectory 1.
#' @param p2 character; trajectory 2.
#'
#' @return list; ggplot2 graphs.
#'
#' @export
#' @docType methods
#' @rdname plotbranch-methods
setGeneric('plotbranch', function(object, direction = c("up", "down"), p1, p2)
standardGeneric('plotbranch'))
#' @rdname plotbranch-methods
#' @aliases plotbranch
setMethod('plotbranch',
signature = "CellRouter",
definition = function(object, direction = c("up", "down"), p1, p2){
direction <- match.arg(direction)
# Branch of interest.
g <- names(object@top.correlations[[direction]][[p1]])
# Other branch.
g <- intersect(g, rownames(cellrouter@dynamics[[p2]]))
# For the main branch.
df <- object@dynamics[[p1]][g, ]
c <- hclust(dist(df, method='euclidean'), method='ward.D')
df <- df[c$order,]
df <- as.data.frame(t(scale(t(df))))
plots <- list()
matrix <- as.data.frame(df)
matrix$gene <- rownames(df)
matrix.m <- reshape2::melt(matrix, id.var="gene")
matrix.m$gene <- factor(rownames(matrix), levels=rev(rownames(matrix)))
# Create plot.
g1 <- ggplot2::ggplot(matrix.m, ggplot2::aes(variable, gene)) +
ggplot2::geom_tile(ggplot2::aes(fill = value)) +
ggplot2::scale_fill_gradientn("zscore",
colours = c("midnightblue",
"dodgerblue3",
"white",
"goldenrod1",
"darkorange2")) +
ggplot2::theme_bw() +
ggplot2::xlab("CellRouter trajectory") + ggplot2::ylab("") +
ggplot2::theme(legend.position="right",
axis.title.y = ggplot2::element_text(size = ggplot2::rel(0.3),
angle = 90),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.text.y = ggplot2::element_blank(),
axis.ticks = ggplot2::element_blank(),
panel.border = ggplot2::element_rect(fill = NA,
colour = ggplot2::alpha('black', 1),
size=1)) +
ggplot2::ggtitle(p1)
plots[[p1]] <- g1
# For the second branch.
# Dynamics of genes in p1 in branch p2.
df <- object@dynamics[[p2]][g, ]
df <- df[c$order,]
df <- as.data.frame(t(scale(t(df))))
matrix <- as.data.frame(df)
matrix$gene <- rownames(df)
matrix.m <- reshape2::melt(matrix, id.var = "gene")
matrix.m$gene <- factor(rownames(matrix),
levels = rev(rownames(matrix)))
# Create plot.
g2 <- ggplot2::ggplot(matrix.m, ggplot2::aes(variable, gene)) +
ggplot2::geom_tile(ggplot2::aes(fill = value)) +
ggplot2::scale_fill_gradientn("zscore",
colours = c("midnightblue",
"dodgerblue3",
"white","goldenrod1",
"darkorange2")) +
ggplot2::theme_bw() +
ggplot2::xlab("CellRouter trajectory") + ggplot2::ylab("") +
ggplot2::theme(legend.position="right",
axis.title.y = ggplot2::element_text(size = ggplot2::rel(0.3),
angle = 90),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.text.y = ggplot2::element_blank(),
axis.ticks = ggplot2::element_blank(),
panel.border = ggplot2::element_rect(fill = NA,
colour = ggplot2::alpha('black', 1),
size=1)) +
ggplot2::ggtitle(p2)
plots[[p2]] <- g2
return(plots)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.