#' AES-PCA permutation test of survival response for pathway PCs
#'
#' @description Given an \code{OmicsSurv} object and a list of pathway principal
#' components (PCs) from the \code{\link{ExtractAESPCs}} function, test if
#' each pathway with features recorded in the bio-assay design matrix is
#' significantly related to the survival output.
#'
#' @param OmicsSurv A data object of class \code{OmicsSurv}, created by the
#' \code{\link{CreateOmics}} function.
#' @param pathwayPCs_ls A list of pathway PC matrices returned by the
#' \code{\link{ExtractAESPCs}} function.
#' @param numReps How many permutations to estimate the \eqn{p}-value? Defaults
#' to 0 (that is, to estimate the \eqn{p}-value parametrically). If
#' \code{numReps} > 0, then the non-parametric, permutation \eqn{p}-value
#' will be returned based on the number of random samples specified.
#' @param parallel Should the computation be completed in parallel? Defaults to
#' \code{FALSE}.
#' @param numCores If \code{parallel = TRUE}, how many cores should be used for
#' computation? Internally defaults to the number of available cores minus 2.
#' @param ... Dots for additional internal arguments (currently unused).
#'
#' @return A named vector of pathway permutation \eqn{p}-values.
#'
#' @details This function takes in a list of the first principal components
#' from each pathway and an object of class \code{OmicsSurv}. This function
#' will then calculate the AIC of a Cox Proportional Hazards model (via the
#' \code{\link[survival]{coxph}} function) with the original observations as
#' response and the pathway principal components as the predictor matrix. Note
#' that the AIC and log-likelihood are proportional because the number of
#' parameters in each pathway is constant.
#'
#' Then, this function will create \code{numReps} permutations of the survival
#' response, fit models to each of these permuted responses (holding the path
#' predictor matrix fixed), and calculate the AIC of each model. This function
#' will return a named vector of permutation \eqn{p}-values, where the value
#' for each pathway is the proportion of models for which the AIC of the
#' permuted response model is less than the AIC of the original model.
#'
#' @seealso \code{\link{CreateOmics}}; \code{\link{ExtractAESPCs}};
#' \code{\link[survival]{coxph}}; \code{\link{SampleSurv}}
#'
#' @include createClass_validOmics.R
#' @include createClass_OmicsSurv.R
#' @include aesPC_extract_OmicsPath_PCs.R
#'
#' @importFrom methods setGeneric
#'
#' @keywords internal
#'
#'
#' @examples
#' # DO NOT CALL THIS FUNCTION DIRECTLY.
#' # Use AESPCA_pVals() instead
#'
#' \dontrun{
#' ### Load the Example Data ###
#' data("colonSurv_df")
#' data("colon_pathwayCollection")
#'
#' ### Create an OmicsSurv Object ###
#' colon_Omics <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' ### Extract Pathway PCs and Loadings ###
#' colonPCs_ls <- ExtractAESPCs(
#' object = colon_Omics,
#' parallel = TRUE,
#' numCores = 2
#' )
#'
#' ### Pathway p-Values ###
#' PermTestSurv(
#' OmicsSurv = colon_Omics,
#' pathwayPCs_ls = colonPCs_ls$PCs,
#' parallel = TRUE,
#' numCores = 2
#' )
#' }
#'
#' @rdname PermTestSurv
setGeneric("PermTestSurv",
function(OmicsSurv,
pathwayPCs_ls,
numReps = 0L,
parallel = FALSE,
numCores = NULL,
...){
standardGeneric("PermTestSurv")
}
)
#' @importFrom survival Surv
#' @importFrom survival coxph
#' @importFrom stats AIC
#' @importFrom parallel clusterEvalQ
#' @importFrom parallel clusterExport
#' @importFrom parallel makeCluster
#' @importFrom parallel parSapply
#' @importFrom parallel stopCluster
#'
#' @rdname PermTestSurv
setMethod(f = "PermTestSurv", signature = "OmicsSurv",
definition = function(OmicsSurv,
pathwayPCs_ls,
numReps = 0L,
parallel = FALSE,
numCores = NULL,
...){
### Function Setup ###
permute_SurvFit <- function(pathwayPCs_mat,
resp_Surv,
numReps_int = numReps){
# browser()
### True Model ###
pathwayPCs_mat <- as.matrix(pathwayPCs_mat)
# We have an instance where all loadings and PC-values can be
# identically 0 (See Issue #69), so we add a catch for this:
if(sum(abs(pathwayPCs_mat)) < .Machine$double.eps){
return(1)
}
true_mod <- coxph(resp_Surv ~ pathwayPCs_mat)
### p-Values ###
# Switch between real and permutation p-value
if(numReps_int == 0){
# Real score-based p-value
trueMod_summ <- summary(true_mod)
out_num <- unname(trueMod_summ$sctest["pvalue"])
} else {
# Permutation p-value
permuteAIC_fun <- function(){
perm_resp <- SampleSurv(
response_vec = resp_Surv[, "time"],
event_vec = resp_Surv[, "status"],
parametric = FALSE
)
perm_Surv <- Surv(
time = perm_resp$response_vec,
event = perm_resp$event_vec
)
AIC(coxph(perm_Surv ~ pathwayPCs_mat))
}
trueAIC <- AIC(true_mod)
permAIC <- replicate(n = numReps_int, expr = permuteAIC_fun())
out_num <- mean(permAIC < trueAIC)
}
### Return ###
out_num
}
### Computation ###
# browser()
response <- Surv(
time = OmicsSurv@eventTime,
event = OmicsSurv@eventObserved
)
if(parallel){
# browser()
### Parallel Computing Setup ###
message("Initializing Computing Cluster: ", appendLF = FALSE)
clust <- makeCluster(numCores)
clustVars_vec <- c(
deparse(quote(response)),
deparse(quote(numReps))
)
clusterExport(
cl = clust,
varlist = clustVars_vec,
envir = environment()
)
invisible(
clusterEvalQ(cl = clust, library(pathwayPCA))
)
message("DONE")
### Extract PCs ###
message("Extracting Pathway p-Values in Parallel: ",
appendLF = FALSE)
pValues_vec <- parSapply(
cl = clust,
pathwayPCs_ls,
permute_SurvFit,
resp_Surv = response,
numReps_int = numReps
)
stopCluster(clust)
message("DONE")
} else {
message("Extracting Pathway p-Values Serially")
pValues_vec <- vapply(
pathwayPCs_ls,
permute_SurvFit,
resp_Surv = response,
numReps_int = numReps,
FUN.VALUE = numeric(1)
)
message("DONE")
}
pValues_vec
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.