make.btrack = function (fmat, bathy, save.samp = F, mintype = 2, ci = 0.95,
npoints = 300, fulldist = T)
{
len = length(fmat[, 1])
ntrack = as.data.frame(matrix(0, len, 6))
ntrack[1, ] = c(0, 0, 0, 0, fmat[1, 8:9])
ntrack[len, ] = c(0, 0, 0, 0, fmat[len, 8:9])
sptmp = NULL
for (i in 2:(length(fmat[, 1]) - 1)) {
print(paste("Bathymetric point ", i, sep = ""))
point = fmat[i, ]
samp = .get.samp(point[4:9], npoints, ci = ci)
samp.bath = sapply(1:length(samp[, 1]), function(j) .get.bath(samp[j,
1], samp[j, 2], bathy))
sidx = samp.bath <= as.numeric(point[10])
samp = samp[sidx, ]
if (length(samp[sidx]) < 3) {
samp = sptmp[[i - 1]]
samp[,1] = jitter(samp[,1])
samp[,2] = jitter(samp[,2]) # 5% jitter if we use the same sampling as previous time step
}
if (mintype == 2)
ntrack[i, 5:6] = .get.min2(ntrack[i - 1, 5], ntrack[i -
1, 6], .denselect(samp)[1], .denselect(samp)[2],
samp)
if (mintype == 3)
ntrack[i, 5:6] = .get.min3(ntrack[i + 1, 5], ntrack[i +
1, 6], ntrack[i - 1, 5], ntrack[i - 1, 6], .denselect(samp)[1],
.denselect(samp)[2], samp)
if (mintype == 4)
ntrack[i, 5:6] = .get.min3(ntrack[i + 1, 5], ntrack[i +
1, 6], .denselect(samp)[1], .denselect(samp)[2],
samp)
sptmp[[i]] = samp
b.init = .get.bath(as.numeric(point[8]), as.numeric(point[9]),
bathy)
print(c(b.init - as.numeric(point[10])))
if (b.init <= as.numeric(point[10]) & fulldist == F) {
ntrack[i, ] = fmat[i, 4:9]
}
else {
tcov = sqrt(cov(samp))
tcov[is.nan(tcov)] = 0
ntrack[i, 1:4] = as.vector(tcov)
}
}
btrack = cbind(fmat[, 1:3], ntrack, fmat[, 10:11])
names(btrack) = c("Year","Month", "Day", "V11", "V12", "V21",
"V22", "Lon_E", "Lat_N", "maxz", "maxt")
attr(btrack,'Header') = "#Bathymetric corrected track"
if (save.samp) {
list(btrack, sptmp)
}
else {
btrack
}
}
# print.btrack<-function(x,...){
# "%+%"<-function(s1, s2)paste(s1, s2, sep="")
# out<-"\n\n#Bathymetric corrected kf/ukf track\n"
# head(x)
# }
# now we use the MASS library mvrnorm function
.get.samp<-
function (vec, npoints, ci = 0.95)
{
vec = as.numeric(vec)
Sigma <- matrix(vec[1:4], 2, 2) * ci
mu <- c(vec[5:6])
if (sum(Sigma) > 0) {
ndata <- mvrnorm(npoints, mu, Sigma)
return(ndata)
}
}
# .get.samp <-
# function(vec,npoints,ci=.95){
# require(QRMlib)
# vec=as.numeric(vec)
# Sigma <- matrix(vec[1:4],2,2)*ci;
# mu <- c(vec[5:6]);
# if(sum(Sigma)>0){
# ndata <- .rmnorm2(npoints,Sigma,mu);
# return(ndata)
# }
# }
.get.min <-
function(lon,lat,samp){
idx<-which.min((lon-samp[,1])^2+(lat-samp[,2])^2)
samp[idx,]
}
.get.min2 <-
function(lon1,lat1,lon2,lat2,samp){
idx<-which.min((lon1-samp[,1])^2+(lat1-samp[,2])^2+(lon2-samp[,1])^2+(lat2-samp[,2])^2)
c(samp[idx,1],samp[idx,2])
}
.get.min3 <-
function(lon1,lat1,lon2,lat2,lon3,lat3,samp){
idx<-which.min((lon1-samp[,1])^2+(lat1-samp[,2])^2+(lon2-samp[,1])^2+(lat2-samp[,2])^2+(lon3-samp[,1])^2+(lat3-samp[,2])^2)
c(samp[idx,1],samp[idx,2])
}
.rmnorm2 <-
function (n, Sigma = equicorr(d, rho), mu = rep(0, d), d = 2,
rho = 0.7) {
d <- dim(Sigma)[1]
A <- t(chol(Sigma,pivot=T))
X <- matrix(rnorm(n * d), nrow = n, ncol = d)
mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)
return(t(A %*% t(X)) + mu.matrix)
}
.denselect <-
function(samp){
samp=samp[!is.na(samp[,1]),]
samp=samp[!is.na(samp[,2]),]
dd1=density(samp[,1])
idx1=dd1$y==max(dd1$y)
xout=dd1$x[idx1]
dd2=density(samp[,2])
idx2=dd2$y==max(dd2$y)
yout=dd2$x[idx2]
cbind(xout,yout)
}
.get.bath <-
function(lon,lat,BATH){
X=as.vector(BATH$lon)
Y=as.vector(BATH$lat)
xidx=which.min((lon-X)^2)
yidx=which.min((lat-Y)^2)
BATH$data[yidx,xidx]
}
.makeCI=
function (x, level = 0.95, npoints = 100, col = rgb(.7,.7,.7,alpha=.9), border = 1,
density = 20, lwd = 0.1 * par("lwd"), saveobj=F,...)
{
t.quan <- sqrt(qchisq(level, 2))
centre <- x[5:6]
x <- matrix(x[1:4], 2, 2)
r <- x[1, 2]
scale <- sqrt(diag(x))
if (scale[1] > 0) {
r <- r/scale[1]
}
if (scale[2] > 0) {
r <- r/scale[2]
}
r <- min(max(r, -1), 1)
d <- acos(r)
a <- seq(0, 2 * pi, len = npoints)
polymat=(matrix(c(t.quan * scale[1] * cos(a + d/2) + centre[1],
t.quan * scale[2] * cos(a - d/2) + centre[2]), npoints,2))
if(saveobj==T){return(polymat)}
else {polygon(polymat, col = col, border = border, density = NA, lwd = lwd,...)}
#polygon(polymat, col = col, border = border, density = NA, lwd = lwd,...)
# polygon(matrix(c(t.quan * scale[1] * cos(a + d/2) + centre[1],
# t.quan * scale[2] * cos(a - d/2) + centre[2]), npoints,
# 2), col = col, border = border, density = NA, lwd = lwd,
# ...)
}
.btrack.bs <- function (fmat, bathy, save.samp = F, mintype = 2, ci = 0.95,
npoints = 300, fulldist = T)
{
len = length(fmat[, 1])
ntrack = as.data.frame(matrix(0, len, 6))
ntrack[1, ] = c(0, 0, 0, 0, fmat[1, 8:9])
ntrack[len, ] = c(0, 0, 0, 0, fmat[len, 8:9])
sptmp = NULL
for (i in rev(2:(length(fmat[, 1]) - 1))) {
print(paste("Bathymetric point ", i, sep = ""))
point = fmat[i, ]
samp = .get.samp(point[4:9], npoints, ci = ci)
samp.bath = sapply(1:length(samp[, 1]), function(j) .get.bath(samp[j,
1], samp[j, 2], bathy))
sidx = samp.bath <= as.numeric(point[10])
samp = samp[sidx, ]
if (length(samp[sidx]) < 3) {
samp = sptmp[[i + 1]]
}
if (mintype == 2)
ntrack[i, 5:6] = .get.min2(ntrack[i - 1, 5], ntrack[i -
1, 6], .denselect(samp)[1], .denselect(samp)[2],
samp)
if (mintype == 3)
ntrack[i, 5:6] = .get.min3(ntrack[i + 1, 5], ntrack[i +
1, 6], ntrack[i - 1, 5], ntrack[i - 1, 6], .denselect(samp)[1],
.denselect(samp)[2], samp)
if (mintype == 4)
ntrack[i, 5:6] = .get.min3(ntrack[i + 1, 5], ntrack[i +
1, 6], .denselect(samp)[1], .denselect(samp)[2],
samp)
sptmp[[i]] = samp
b.init = .get.bath(as.numeric(point[8]), as.numeric(point[9]),
bathy)
print(c(b.init - as.numeric(point[10])))
if (b.init <= as.numeric(point[10]) & fulldist == F) {
ntrack[i, ] = fmat[i, 4:9]
}
else {
tcov = sqrt(cov(samp))
tcov[is.nan(tcov)] = 0
ntrack[i, 1:4] = as.vector(tcov)
}
}
btrack = cbind(fmat[, 1:3], ntrack, fmat[, 10:11])
names(btrack) = c("Day", "Month", "Year", "V11", "V12", "V21",
"V22", "Lon_E", "Lat_N", "maxz", "maxt")
if (save.samp) {
return(btrack, sptmp)
}
else {
return(btrack)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.