R/summary_sheets_samples.r

Defines functions pipeline.summarySheetsSamples

pipeline.summarySheetsSamples <- function(env)
{
  dir.create(env$output.paths["Summary Sheets Samples"], showWarnings=FALSE)

  #### Summary Sheets ####

  ylim.max <- 0

  for (m in 1:ncol(env$indata))
  {
    h <- hist(env$p.g.m[,m], bre=20, plot=FALSE)
    y.max <- max(h$density)

    if (y.max > ylim.max)
    {
      ylim.max <- y.max
    }
  }

  util.info("Writing:", file.path(env$output.paths["Summary Sheets Samples"], "*.pdf"))

  for (m in 1:ncol(env$indata))
  {
    basename <- paste(make.names(make.unique(colnames(env$indata))[m]), ".pdf", sep="")
    pdf(file.path(env$output.paths["Summary Sheets Samples"], basename), 29.7/2.54, 21/2.54, useDingbats=FALSE)

    ## Global Sheet
    layout(matrix(c(1,2,0,1,3,4,5,5,6,7,7,8), 3, 4), widths=c(1,1,2,2), heights=c(2,1,1))
    par(mar=c(0,0,0,0))
    plot(0, type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1))

    text(0.1, 0.94, colnames(env$indata)[m] , cex=3, adj=0)
    text(0.1, 0.8, "Global Summary" , cex=1.8, adj=0)
    text(0.1, 0.7,  paste("%DE =", round(env$perc.DE.m[colnames(env$indata)[m]], 2)), adj=0)

    all.fdr.genes <- which(env$fdr.g.m[,m] < 0.2)
    plus.fdr.genes <- which(env$indata[all.fdr.genes, m] > 0)
    minus.fdr.genes <- which(env$indata[all.fdr.genes, m] <= 0)

    text(0.1, 0.65, paste("# genes with fdr < 0.2  =",
                          length(all.fdr.genes), " (",
                          length(plus.fdr.genes), "+ /",
                          length(minus.fdr.genes), " -)"), adj=0)

    all.fdr.genes   <- which(env$fdr.g.m[,m] < 0.1)
    plus.fdr.genes  <- which(env$indata[all.fdr.genes, m] > 0)
    minus.fdr.genes <- which(env$indata[all.fdr.genes, m] <= 0)

    text(0.1, 0.6, paste("# genes with fdr < 0.1  =",
                         length(all.fdr.genes)," (",
                         length(plus.fdr.genes), "+ /",
                         length(minus.fdr.genes), " -)"), adj=0)

    all.fdr.genes   <- which(env$fdr.g.m[,m] < 0.05)
    plus.fdr.genes  <- which(env$indata[all.fdr.genes, m] > 0)
    minus.fdr.genes <- which(env$indata[all.fdr.genes, m] <= 0)

    text(0.1, 0.55, paste("# genes with fdr < 0.05  =",
                          length(all.fdr.genes)," (",
                          length(plus.fdr.genes), "+ /",
                          length(minus.fdr.genes), " -)"), adj=0)

    all.fdr.genes   <- which(env$fdr.g.m[,m] < 0.01)
    plus.fdr.genes  <- which(env$indata[all.fdr.genes, m] > 0)
    minus.fdr.genes <- which(env$indata[all.fdr.genes, m] <= 0)

    text(0.1, 0.5, paste("# genes with fdr < 0.01 =",
                         length(all.fdr.genes)," (",
                         length(plus.fdr.genes), "+ /",
                         length(minus.fdr.genes), " -)"), adj=0)

    text(0.1, 0.35,  paste("<FC> =", round(mean(env$indata[,m]), 2)), adj=0)
    text(0.1, 0.3,  paste("<p-value> =", round(10 ^ mean(log10(env$p.g.m[,m])), 2)), adj=0)
    text(0.1, 0.25, paste("<fdr> =", round(mean(env$fdr.g.m[,m]), 2)), adj=0)

    
    # portrait
    
    par(mar=c(2,3,3,1))

    image(matrix(env$metadata[,m], env$preferences$dim.1stLvlSom, env$preferences$dim.1stLvlSom),
          axes=FALSE, col = env$color.palette.portraits(1000), main="Portrait", cex.main=1.5)

    axis(1,
         seq(0, 1, length.out=env$preferences$dim.1stLvlSom/10+1),
         c(1, seq(10, env$preferences$dim.1stLvlSom, length.out=env$preferences$dim.1stLvlSom/10)),
         cex.axis=1.0)

    axis(2,
         seq(0, 1, length.out=env$preferences$dim.1stLvlSom/10+1),
         c(1, seq(10, env$preferences$dim.1stLvlSom, length.out=env$preferences$dim.1stLvlSom/10)),
         cex.axis=1.0, las=1)

    box()
    
    
    # top 100 differentially expressed genes
    
    n.genes <- min( 100, nrow(env$indata) )
    n.map <- matrix(0,env$preferences$dim.1stLvlSom,env$preferences$dim.1stLvlSom)
    set.genes <- names(sort(env$p.g.m[,m]))[1:n.genes]
    gs.nodes <- env$som.result$feature.BMU[set.genes]
    n.map[as.numeric(names(table(gs.nodes)))] <- table(gs.nodes)
    n.map[which(n.map==0)] <- NA
    n.map <- matrix(n.map, env$preferences$dim.1stLvlSom)
    
    lim <- c(1,env$preferences$dim.1stLvlSom) + env$preferences$dim.1stLvlSom * 0.01 * c(-1, 1)
    colr <- env$color.palette.heatmaps(1000)[(na.omit(as.vector(n.map)) - min(n.map,na.rm=TRUE)) /
                                               max(1, (max(n.map,na.rm=TRUE) - min(n.map,na.rm=TRUE))) *
                                               999 + 1]
    
    par(mar=c(2,3,3,1))
    plot(which(!is.na(n.map), arr.ind=TRUE), xlim=lim, ylim=lim, pch=16, axes=FALSE,
         xlab="",ylab="", xaxs="i", yaxs="i", col=colr, main="Top 100 DE genes", cex.main=1.5,
         cex=0.5 + na.omit(as.vector(n.map)) / max(n.map,na.rm=TRUE) * 2.8)
    
    axis(1,
         c(1, seq(10, env$preferences$dim.1stLvlSom, length.out=env$preferences$dim.1stLvlSom/10)),
         c(1, seq(10, env$preferences$dim.1stLvlSom, length.out=env$preferences$dim.1stLvlSom/10)),
         cex.axis=1.0)
    
    axis(2,
         c(1, seq(10, env$preferences$dim.1stLvlSom, length.out=env$preferences$dim.1stLvlSom/10)),
         c(1, seq(10, env$preferences$dim.1stLvlSom, length.out=env$preferences$dim.1stLvlSom/10)),
         cex.axis=1.0, las=1)
    
    box()
    
    
    # volcano plot
    
    par(mar=c(3,3,3,1))
    
    plot( env$indata[set.genes,m], -log10(env$p.g.m[set.genes,m]), xlim=c(-1,1)*max(abs(env$indata[set.genes,m])), xlab="", ylab="", pch=16,col="gray30", las=1)
      mtext("log FC", 1, line=2, cex=.6)
      mtext("-log10(p)", 2, line=2, cex=.6)
      abline(v=0,lty=3,col="gray80",lwd=1.5)
      abline(h=-log10(0.05),lty=3,col="gray80",lwd=1.5)
    
      
    # differentially expressed genes list
    
    n.genes <- min(20, nrow(env$indata))
    
    de.genes <- names(sort(env$p.g.m[,m]))
    de.genes <- de.genes[ which(env$indata[de.genes,m]>0) ]
    de.genes <- de.genes[ 1:min(n.genes,length(de.genes)) ]
    
    de.genes.labels <- env$gene.info$names[de.genes]
    de.genes.labels[which(de.genes.labels=="")] <- de.genes[which(de.genes.labels=="")]
    
    par(mar=c(0,0,0,0))

    x.coords <- c(0, 0.06, 0.2, 0.28, 0.36, 0.44, 0.52)
    y.coords <- seq(0.75, 0.4, length.out=n.genes)[1:length(de.genes)]

    plot(0, type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1))

    text(0, 0.88, "Differentially expressed genes", cex=1.8, adj=0)
    text(x.coords, rep(c(0.82, 0.80), 4)[1:7],
         c("Rank", "ID", "log(FC)", "p-value", "fdr", "Metagene", "Description"),
         cex=1, adj=0)
    
    if( length(de.genes)>0 )
    {
      text(x.coords[1], 0.77, "Overexpressed", cex=0.8, adj=0, font=3)
      
      text(x.coords[1], y.coords, c(1:length(de.genes)), adj=0)
      text(x.coords[2], y.coords, de.genes.labels, cex=0.6, adj=0)
      rect(x.coords[3]-0.02, y.coords[1]+0.01, 1, 0, border="white", col="white")
      text(x.coords[3], y.coords, round(env$indata[de.genes, m], 2), cex=0.6, adj=0)
      text(x.coords[4], y.coords, format(env$p.g.m[de.genes, m], digits=1), cex=0.6, adj=0)
      text(x.coords[5], y.coords, format(env$fdr.g.m[de.genes, m], digits=1), cex=0.6, adj=0)
      text(x.coords[6], y.coords, env$gene.info$coordinates[de.genes], cex=0.6, adj=0)
      text(x.coords[7], y.coords, env$gene.info$descriptions[de.genes], cex=0.6, adj=0)
    }
    
    de.genes <- names(sort(env$p.g.m[,m]))
    de.genes <- de.genes[ which(env$indata[de.genes,m]<0) ]
    
    
    if( length(de.genes)>0 )
    {
      de.genes <- de.genes[ 1:min(n.genes,length(de.genes)) ]
      
      de.genes.labels <- env$gene.info$names[de.genes]
      de.genes.labels[which(de.genes.labels=="")] <- de.genes[which(de.genes.labels=="")]
      
      y.coords <- seq(0.35, 0.02, length.out=n.genes)[1:length(de.genes)]
      
      text(x.coords[1], 0.37, "Underexpressed", cex=0.8, adj=0, font=3)
      
      text(x.coords[1], y.coords, c(1:length(de.genes)), adj=0)
      text(x.coords[2], y.coords, de.genes.labels, cex=0.6, adj=0)
      rect(x.coords[3]-0.02, y.coords[1]+0.01, 1, 0, border="white", col="white")
      text(x.coords[3], y.coords, round(env$indata[de.genes, m], 2), cex=0.6, adj=0)
      text(x.coords[4], y.coords, format(env$p.g.m[de.genes, m], digits=1), cex=0.6, adj=0)
      text(x.coords[5], y.coords, format(env$fdr.g.m[de.genes, m], digits=1), cex=0.6, adj=0)
      text(x.coords[6], y.coords, env$gene.info$coordinates[de.genes], cex=0.6, adj=0)
      text(x.coords[7], y.coords, env$gene.info$descriptions[de.genes], cex=0.6, adj=0)
    }  
    
    # p-value histogram
    
    par(mar=c(3,6,2,6))

    hist(env$p.g.m[,m], bre=20, freq=FALSE, xlab="p-value", ylab="", main="p-values",
         ylim=c(0,ylim.max), las=1, cex.main=1.5, cex.lab=1, cex.axis=1)

    box()
    mtext("Density", side=2, line=3, cex=1)
    mtext("FDR", side=4, line=3, cex=1)
    mtext(paste("%DE =", round(env$perc.DE.m[colnames(env$indata)[m]] ,2)), line=-1.2, cex=0.5)

    abline(h=env$n.0.m[colnames(env$indata)[m]], col="gray", lwd=2)

    par(new=TRUE)
    plot(0, type="n", xlim=c(0,1), ylim=c(0,1), xlab="", ylab="", axes=FALSE)
    axis(4, seq(0, 1, 0.2), seq(0, 1, 0.2), las=1, cex.axis=1)
    o <- order(env$p.g.m[,m])
    lines(env$p.g.m[o,m], env$fdr.g.m[o,m], lty=3, lwd=3)

    legend("topright", c("p", expression(env$eta[0]), "fdr"),
           col=c("black","gray","black"), lty=c(1,1,3),
           lwd=c(1,1,2), cex=0.7)

    
    #if (env$preferences$activated.modules$geneset.analysis)
    if (env$preferences$activated.modules$geneset.analysis & n.genes > 0)
    {
      # differentially expressed gene sets list
      
      n.sets <- 20

      top.gs.score <- sort(env$samples.GSZ.scores[,m], decreasing=TRUE)[1:n.sets] 

      par(mar=c(0,0,0,0))

      x.coords <- c(0, 0.1, 0.18, 0.27, 0.37)
      y.coords <- seq(0.75, 0.4, length.out=n.sets)

      plot(0, type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1))

      text(0, 0.88, "Differentially expressed gene sets", cex=1.8, adj=0)
      text(x.coords, 0.82, c("Rank", "GSZ", "#all", "Geneset", ""), cex=1, adj=0)
      text(x.coords[1], 0.77, "Overexpressed", cex=0.8, adj=0, font=3)

      text(x.coords[1], y.coords, c(1:n.genes), adj=0)
      text(x.coords[2], y.coords, round(top.gs.score, 2), cex=0.6, adj=0)

      text(x.coords[3], y.coords, sapply(env$gs.def.list[names(top.gs.score)],
                                         function(x) { length(x$Genes) }), cex=0.6, adj=0)

      text(x.coords[4], y.coords, sapply(env$gs.def.list, function(x) { x$Type })[names(top.gs.score)], cex=0.6, adj=0)
      text(x.coords[5], y.coords, names(top.gs.score), cex=0.6, adj=0)

      top.gs.score <- sort(env$samples.GSZ.scores[,m], decreasing=FALSE)[1:n.sets]

      y.coords <- seq(0.35, 0.02, length.out=n.sets)

      text(x.coords[1], 0.37, "Underexpressed", cex=0.8, adj=0, font=3)
      text(x.coords[1], y.coords, c(1:n.genes), adj=0)
      text(x.coords[2], y.coords, round(top.gs.score, 2), cex=0.6, adj=0)

      text(x.coords[3], y.coords, sapply(env$gs.def.list[names(top.gs.score)],
                                         function(x) { length(x$Genes) }), cex=0.6, adj=0)

      text(x.coords[4], y.coords, sapply(env$gs.def.list, function(x) { x$Type })[names(top.gs.score)], cex=0.6, adj=0)
      text(x.coords[5], y.coords, names(top.gs.score), cex=0.6, adj=0)
    }

    dev.off()
  }
}
hloefflerwirth/oposSOM documentation built on Oct. 29, 2024, 4:12 a.m.