differential_CNV | R Documentation |
Do difference analysis of gene level copy number variation data
differential_CNV(
cnvData,
sampleGroup,
method = "Chisquare",
adjust.method = "BH",
...
)
cnvData |
data.frame of CNV data, each column is a sample, and each row is a CNV. |
sampleGroup |
vector of sample group |
method |
method to do diffenenital analysis, one of "Chisquare", "fisher", and "CATT"(Cochran-Armitage trend test) |
adjust.method |
adjust.method, one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", and "none". |
... |
parameters for "Chisquare", "fisher", and "CATT"(Cochran-Armitage trend test) |
data.frame with pvalue and estimate
# use TCGAbiolinks data as example
library(TCGAbiolinks)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Copy Number Variation",
data.type = "Gene Level Copy Number",
access = "open"
)
GDCdownload(query)
cnvData <- GDCprepare(query)
aa <- assays(cnvData)$copy_number
bb <- aa
aa[bb == 2] <- 0
aa[bb < 2] <- -1
aa[bb > 2] <- 1
sampleGroup <- sample(c("A", "B"), ncol(cnvData), replace = TRUE)
diffCnv <- differential_CNV(aa, sampleGroup)
# Use sangerbox CNV data as example
cnvData <- fread("Merge_GeneLevelCopyNumber.txt")
class(cnvData) <- "data.frame"
rownames(cnvData) <- cnvData[, 1]
cnvData <- cnvData[, -c(1, 2, 3)]
sampleGroup <- sample(c("A", "B"), ncol(cnvData), replace = TRUE)
diffCnv <- differential_CNV(cnvData, sampleGroup)
# use random data as example
aa <- matrix(sample(c(0, 1, -1), 200, replace = TRUE), 25, 8)
rownames(aa) <- paste0("gene", 1:25)
colnames(aa) <- paste0("sample", 1:8)
sampleGroup <- sample(c("A", "B"), ncol(aa), replace = TRUE)
diffCnv <- differential_CNV(aa, sampleGroup)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.