View source: R/Merge_methylation.R
differential_methy | R Documentation |
Get methylation difference gene
differential_methy(
cpgData,
sampleGroup,
groupCol,
combineMethod = "stouffer",
missing_value = "knn",
cpg2gene = NULL,
normMethod = "PBC",
region = "TSS1500",
model = "gene",
adjust.method = "BH",
adjPvalCutoff = 0.05,
ucscData = FALSE
)
cpgData |
data.frame of cpg beta value, , or SummarizedExperiment object |
sampleGroup |
vector of sample group |
groupCol |
group column |
combineMethod |
method to combine the cpg pvalues, a function or one of "stouffer", "fisher" and "rhoScores". |
missing_value |
Method to impute missing expression data, one of "zero" and "knn". |
cpg2gene |
data.frame to annotate cpg locus to gene |
normMethod |
Method to do normalization: "PBC" or "BMIQ". |
region |
region of genes, one of "Body", "TSS1500", "TSS200", "3'UTR", "1stExon", "5'UTR", and "IGR". Only used when cpg2gene is NULL. |
model |
if "cpg", step1: calculate difference cpgs; step2: calculate difference genes. if "gene", step1: calculate the methylation level of genes; step2: calculate difference genes. |
adjust.method |
character string specifying the method used to adjust p-values for multiple testing. See p.adjust for possible values. |
adjPvalCutoff |
adjusted pvalue cutoff |
ucscData |
Logical, whether the data comes from UCSC Xena. |
data.frame
# use TCGAbiolinks data
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-ACC",
data.category = "DNA Methylation",
data.type = "Methylation Beta Value",
platform = "Illumina Human Methylation 450")
GDCdownload(query, method = "api", files.per.chunk = 5,
directory = Your_Path)
merge_result <- Merge_methy_tcga(Your_Path_to_DNA_Methylation_data)
library(ChAMP) # To avoid reporting errors
differential_gene <- differential_methy(cpgData = merge_result,
sampleGroup = sample(c("C","T"),
ncol(merge_result[[1]]), replace = TRUE))
# use user defined data
library(ChAMP)
cpgData <- matrix(runif(2000), nrow = 200, ncol = 10)
rownames(cpgData) <- paste0("cpg", seq_len(200))
colnames(cpgData) <- paste0("sample", seq_len(10))
sampleGroup <- c(rep("group1", 5), rep("group2", 5))
names(sampleGroup) <- colnames(cpgData)
cpg2gene <- data.frame(cpg = rownames(cpgData),
gene = rep(paste0("gene", seq_len(20)), 10))
result <- differential_methy(cpgData, sampleGroup,
cpg2gene = cpg2gene, normMethod = NULL)
# use SummarizedExperiment object input
library(ChAMP)
cpgData <- matrix(runif(2000), nrow = 200, ncol = 10)
rownames(cpgData) <- paste0("cpg", seq_len(200))
colnames(cpgData) <- paste0("sample", seq_len(10))
sampleGroup <- c(rep("group1", 5), rep("group2", 5))
names(sampleGroup) <- colnames(cpgData)
cpg2gene <- data.frame(cpg = rownames(cpgData),
gene = rep(paste0("gene", seq_len(20)), 10))
colData <- S4Vectors::DataFrame(
row.names = colnames(cpgData),
group = sampleGroup
)
data <- SummarizedExperiment::SummarizedExperiment(
assays=S4Vectors::SimpleList(counts=cpgData),
colData = colData)
result <- differential_methy(cpgData = data,
groupCol = "group", normMethod = NULL,
cpg2gene = cpg2gene)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.